Pits have been observed on many cometary nuclei mapped by spacecraft. It has been argued that cometary pits are a signature of endogenic activity, rather than impact craters such as those on planetary and asteroid surfaces. Impact experiments and models cannot reproduce the shapes of most of the observed cometary pits, and the predicted collision rates imply that few of the pits are related to impacts. Alternative mechanisms like explosive activity have been suggested, but the driving process remains unknown. Here we report that pits on comet 67P/Churyumov-Gerasimenko are active, and probably created by a sinkhole process, possibly accompanied by outbursts. We argue that after formation, pits expand slowly in diameter, owing to sublimation-driven retreat of the walls. Therefore, pits characterize how eroded the surface is: a fresh cometary surface will have a ragged structure with many pits, while an evolved surface will look smoother. The size and spatial distribution of pits imply that large heterogeneities exist in the physical, structural or compositional properties of the first few hundred metres below the current nucleus surface.
Aims. We derive for the first time the size-frequency distribution of boulders on a comet, 67P/Churyumov-Gerasimenko (67P), computed from the images taken by the Rosetta/OSIRIS imaging system. We highlight the possible physical processes that lead to these boulder size distributions. Methods. We used images acquired by the OSIRIS Narrow Angle Camera, NAC, on 5 and 6 August 2014. The scale of these images (2.44−2.03 m/px) is such that boulders ≥7 m can be identified and manually extracted from the datasets with the software ArcGIS. We derived both global and localized size-frequency distributions. The three-pixel sampling detection, coupled with the favorable shadowing of the surface (observation phase angle ranging from 48• to 53 • ), enables unequivocally detecting boulders scattered all over the illuminated side of 67P. Results. We identify 3546 boulders larger than 7 m on the imaged surface (36.4 km 2 ), with a global number density of nearly 100/km 2 and a cumulative size-frequency distribution represented by a power-law with index of −3.6 +0.2/−0.3. The two lobes of 67P appear to have slightly different distributions, with an index of −3.5 +0.2/−0.3 for the main lobe (body) and −4.0 +0.3/−0.2 for the small lobe (head). The steeper distribution of the small lobe might be due to a more pervasive fracturing. The difference of the distribution for the connecting region (neck) is much more significant, with an index value of −2.2 +0.2/−0.2. We propose that the boulder field located in the neck area is the result of blocks falling from the contiguous Hathor cliff. The lower slope of the size-frequency distribution we see today in the neck area might be due to the concurrent processes acting on the smallest boulders, such as i) disintegration or fragmentation and vanishing through sublimation; ii) uplifting by gas drag and consequent redistribution; and iii) burial beneath a debris blanket. We also derived the cumulative size-frequency distribution per km 2 of localized areas on 67P. By comparing the cumulative size-frequency distributions of similar geomorphological settings, we derived similar power-law index values. This suggests that despite the selected locations on different and often opposite sides of the comet, similar sublimation or activity processes, pit formation or collapses, as well as thermal stresses or fracturing events occurred on multiple areas of the comet, shaping its surface into the appearance we see today.
Aims. We provide a detailed morphological analysis of the Aswan site on comet 67P/Churyumov-Gerasimenko (67P). We derive the size-frequency distribution of boulders ≥2 m and correlate this distribution with the gravitational slopes for the first time on a comet. We perform the spectral analysis of this region to understand if possible surface variegation is related to the different surface textures observable on the different units. Methods. We used two OSIRIS Narrow Angle Camera (NAC) image data sets acquired on September 19 and 22, 2014, with a scale of 0.5 m/px. Gravitational slopes derived from the 3D shape model of 67P were used to identify and interpret the different units of the site. By means of the high-resolution NAC data sets, boulders ≥2.0 m can be unambiguously identified and extracted using the software ArcGIS. Coregistered and photometrically corrected color cubes were used to perform the spectral analyses, and we retrieved the spectral properties of the Aswan units. Results. The high-resolution morphological map of the Aswan site (0.68 km 2 ) shows that this site is characterized by four different units: fineparticle deposits located on layered terrains, gravitational accumulation deposits, taluses, and the outcropping layered terrain. Multiple lineaments are identified on the Aswan cliff, such as fractures, exposed layered outcrops, niches, and terraces. Close to the terrace margin, several arched features observed in plan view suggest that the margin progressively retreats as a result of erosion. The size-frequency of boulders ≥2 m in the entire study area has a power-law index of −3.9 +0.2/−0.3 (1499 boulders ≥2 m/km 2 ), suggesting that the Aswan site is mainly dominated by gravitational events triggered by sublimation and/or thermal insolation weathering causing regressive erosion. The boulder size-frequency distribution versus gravitational slopes indicates that when higher gravitational slope terrains are considered, only boulders ≤10 m are identified, as well as steeper power-slope indices. In addition, no boulders ≥2 m are observed on slopes ≥50• . This may indicate that larger blocks detached from a sublimating cliff cannot rest at these slopes and consequently fall down. The spectral analysis performed on the site shows that despite different morphologic units, no spectral differences appear in the multiple textures. This may confirm a redistribution of particles across the nucleus as a consequence of airfall, whether coming from Hapi or from the southern hemisphere when it is active during perihelion.
We provide a three-dimensional model of the inner layered structure of comet 67P based on the hypothesis of an extended layering independently wrapping each lobe. A large set of terrace orientations was collected on the latest shape model and then used as a proxy for the local orientation of the surfaces of discontinuity which defines the layers. We modelled the terraces as a family of concentric ellipsoidal shells with fixed axis ratios, producing a model that is completely defined by just eight free parameters. Each lobe of 67P has been modelled independently, and the two sets of parameters have been estimated by means of non-linear optimization of the measured terrace orientations. The proposed model is able to predict the orientation of terraces, the elongation of cliffs, the linear traces observed in the Wosret and Hathor regions and the peculiar alignment of boulder-like features which has been observed in the Hapi region, which appears to be related to the inner layering of the big lobe. Our analysis allowed us to identify a plane of junction between the two lobes, further confirming the independent nature of the lobes. Our layering models differ from the best-fitting topographic ellipsoids of the surface, demonstrating that the terraces are aligned to an internal structure of discontinuities, which is unevenly exposed on the surface, suggesting a complex history of localized material removal from the nucleus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.