This study proposes a method for measuring curved-mechanical characteristics based on a whole-folding test for transparent conductive film-coated polymer substrates using common-path optical interferometry. Accordingly, 80-, 160-, and 230-nm indium tin oxide films coated on 40 × 40 mm 125-μm-thick polyethylene terephthalate (PET) substrates, and monolayer graphene films coated on 40 × 40 mm 250-μm-thick PET substrates are inspected and analyzed under the curving conditions of 50-, 30-, 20-, and 10-mm radii before and after an 11,000 whole-folding cycle test based on a 10-mm folding radius. This study utilizes the changes in the phase retardations of transparent conductive film-coated polymer substrates under different curving conditions before and after 11,000 whole-folding cycles to analyze the substrates’ residual stress characteristics that were the direct result of manufacturing process parameters. The results from this study of curved-mechanical characteristic measurements of flexible transparent conductive substrates can provide designers with improved product development and can assist manufacturers in improving the manufacturing design of enhanced coating processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.