Tools to identify and classify stratiform and convective rains at various times of the 12 days from June 2015 to March 2016 in Jincheon, Korea, were developed by using a Parsivel disdrometer and S-band polarimetric (S-POL) radar data. Stratiform and convective rains were identified using three different methods (vertical profile of reflectivity (VPR), the method proposed by Bringi et al. (BR03), and a combination of the two (BR03-VPR)) by using a Parsivel disdrometer for its applications to radar as a reference. BR03-VPR exhibits a better classification scheme than the VPR and BR03 methods. The rain types were compared using the drop size distribution (DSD) retrieved from polarimetric variables and reflectivity only. By using the DSD variables, a new convective/stratiform classification line of the log-normalized droplet number concentration ( log 10 N w ) − median volume diameter ( D 0 ) was derived for this area to classify the rainfall types using DSD variables retrieved from the polarimetric radar. For the radar variables, the method by Steiner et al. (SHY95) was found to be the best method, with 0.00% misclassification of the stratiform rains. For the convective rains, the DSD retrieval method performed better. However, for both stratiform and convective rains, the fuzzy method performed better than the SHY95 and DSD retrieval methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.