Cross-laminated Timber (CLT) has become an emerging board material of wood construction that is strong enough to sustain a high-rise building. However, many wooden congregate housing units overseas that utilize CLT have poor sound environments because the low mass of such wood influences sound insulation performance. In this research, we explored the effect of different CLT walls on sound insulation performance and integrated applicable sound insulation simulation tools to simplify the process of designing a CLT wall structure. This research aimed at a double wall and CLT combined with a gypsum board as the research object. The sound insulation performance test was carried out in a laboratory, while the sound insulation performance of the structure was predicted through simulation tools and prediction models and then compared with the measured values to verify the applicability of the simulation tool. The CLT with a double wall and CLT with gypsum board (CLT + GB) achieved Rw of 50 dB. The numerical simulation had better prediction performance than INSUL at the double wall, while the double wall with cavity structure was close to the measured result via mass law calculation. The INSUL-predicted CLT with a gypsum board at 500 Hz~3150 Hz was close to the measured value.
The bass ratio describes the relationship between the reverberation energy in the low frequency region and that of the middle frequency. An appropriate bass ratio can create a warm sound; however, too much bass can influence speech clarity (C50) and work efficiency and can even cause listeners to feel tired or exhausted. Using perforated plate resonance theory and membrane resonance theory, this research developed the panel membrane resonant absorber (PMRA), which not only provides an outstanding continuous absorption spectrum in the broadband range of 100–800 Hz but also presents an aesthetic appearance at a low cost. We divided this study into two parts: (1) PMRA development and experiment and (2) field application and measurement to confirm the sound absorption performance of the PMRA. In part 1, PMRA was developed by combining different materials and thicknesses of the air cavity. In the field study of part 2, the PMRA with the appropriate sound-absorbing curve was installed in a small auditorium, where we conducted field measurements for reverberation time (RT) and speech clarity (C50). According to the experimental results, the PMRA had great absorption performance at a low frequency. In the field validation, the PMRA was found to effectively decrease the low-frequency RT while also maintaining the RT of middle-high frequency. The C50 of the auditorium was also improved.
Reverberation time (RT) is an important factor affecting the quality of indoor acoustics. Using sound-absorbing materials is one method for quickly and effectively controlling RT, and installation in the ceiling is a common location. Sound-absorbing ceilings come in many forms, with light steel joist ceilings commonly used in office spaces, classrooms, and discussion rooms. Light steel joist ceilings are often matched with sound-absorbing materials such as gypsum board, mineral fiberboard, rock wool, and coated glass wool, but such materials may have durability and exfoliation problems. Therefore, considering performance and health, in this research, we aimed to design an expanded metal mesh (EMM) structure specimen for sound-absorption material, namely folded expanded metal mesh (FEMM). The results show that the FEMM can significantly improve the sound-absorption performance of the expanded metal mesh. Theof single panel is 0.05–0.35, and theof FEMM is 0.65–0.85. On the other hand, the sound-absorption performance of the full frequency band has been significantly improved. Furthermore, the field validation result shows that RT decreased from 1.05–0.56 s at 500 Hz, meanwhile, the sound pressure level (SPL) is still evenly distributed, and speech clarity (C50) is increased by 5.6–6.5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.