Breast cancer is one of the most harmful diseases for women with the highest morbidity. An efficient way to decrease its mortality is to diagnose cancer earlier by screening. Clinically, the best approach of screening for Asian women is ultrasound images combined with biopsies. However, biopsy is invasive and it gets incomprehensive information of the lesion. The aim of this study is to build a model for automatic detection, segmentation, and classification of breast lesions with ultrasound images. Based on deep learning, a technique using Mask regions with convolutional neural network was developed for lesion detection and differentiation between benign and malignant. The mean average precision was 0.75 for the detection and segmentation. The overall accuracy of benign/malignant classification was 85%. The proposed method provides a comprehensive and noninvasive way to detect and classify breast lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.