Redundant features and outliers (noise) included in the data points for a machine learning clustering model heavily influences the discovery of more distinguished features for clustering. To solve this issue, we propose a spectral new clustering method to consider the feature selection with the L 2,1 -norm regularization as well as simultaneously learns orthogonal representations for each sample to preserve the local structures of data points. Our model also solves the issue of out-of-sample, where the training process does not output an explicit model to predict unseen data points, along with providing an efficient optimization method for the proposed objective function. Experimental results showed that our method on twelve data sets achieves the best performance compared with other similar models.
Classic k-means clustering algorithm randomly selects centroids for initialization to possibly output unstable clustering results. Moreover, random initialization makes the clustering result hard to reproduce. Spectral clustering algorithm is a two-step strategy, which first generates a similarity matrix and then conducts eigenvalue decomposition on the Laplacian matrix of the similarity matrix to obtain the spectral representation. However, the goal of the first step in the spectral clustering algorithm does not guarantee the best clustering result. To address the above issues, this paper proposes an Initialization-Similarity (IS) algorithm which learns the similarity matrix and the new representation in a unified way and fixes initialization using the sum-ofnorms regularization to make the clustering more robust. The experimental results on ten realworld benchmark datasets demonstrate that our IS clustering algorithm outperforms the comparison clustering algorithms in terms of three evaluation metrics for clustering algorithm including accuracy (ACC), normalized mutual information (NMI), and Purity.
K-means clustering is one of the most popular clustering algorithms and has been embedded in other clustering algorithms, e.g. the last step of spectral clustering. In this paper, we propose two techniques to improve previous k-means clustering algorithm by designing two different adjacent matrices. Extensive experiments on public UCI datasets showed the clustering results of our proposed algorithms significantly outperform three classical clustering algorithms in terms of different evaluation metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.