Autosomal dominant progressive external ophthalmoplegia is a rare human disease that shows a Mendelian inheritance pattern, but is characterized by large-scale mitochondrial DNA (mtDNA) deletions. We have identified two heterozygous missense mutations in the nuclear gene encoding the heart/skeletal muscle isoform of the adenine nucleotide translocator (ANT1) in five families and one sporadic patient. The familial mutation substitutes a proline for a highly conserved alanine at position 114 in the ANT1 protein. The analogous mutation in yeast caused a respiratory defect. These results indicate that ANT has a role in mtDNA maintenance and that a mitochondrial disease can be caused by a dominant mechanism.
We describe here a screening procedure devised for searching new genes involved in protein secretion in Saccharomyces cerevisiae. The screening procedure takes advantage of yeast strains constructed within the EUROFAN project, in which the promoters of the novel essential genes were replaced by the doxycycline-regulated tetO 7 -CYC1 promoter. This promoter is active in normal growth medium but results in downregulation of the gene in the presence of doxycycline. The yeast cells were grown in the presence or absence of doxycycline, and both the growth and secretion of the heat shock protein, Hsp150p, into the culture medium were determined. In seven strains there was a specific effect on protein secretion. In a strain in which the RPN5 gene was downregulated, the level of secreted Hsp150p was increased compared to the control culture. When RER2 was downregulated, cells secreted Hsp150p that was not of the mature size. In five strains, secretion was more severely reduced than cell growth. One of these downregulated genes, YGL098w, was recently reported to encode an ER-located t-SNARE, USE1. Four of the genes detected, NOG2, NOP15, RRP40 and SDA1, encode proteins involved in ribosome assembly, suggesting a possible new signalling pathway between ribosome biogenesis and production of secreted proteins. The results obtained here indicate that the present screen could be successfully used in larger scale to identify novel secretion-related genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.