Many proteins suspected of causing neurodegenerative diseases exist in diverse assembly states. For most, it is unclear whether shifts from one state to another would be helpful or harmful. We used mutagenesis to change the assembly state of Alzheimer disease (AD)-associated amyloid- (A) peptides. In vitro, the "Arctic" mutation (AE22G) accelerated A fibrillization but decreased the abundance of nonfibrillar A assemblies, compared with wild-type A. In human amyloid precursor protein (hAPP) transgenic mice carrying mutations adjacent to A that increase A production, addition of the Arctic mutation markedly enhanced the formation of neuritic amyloid plaques but reduced the relative abundance of a specific nonfibrillar A assembly (A*56). Mice overexpressing Arctic mutant or wildtype A had similar behavioral and neuronal deficits when they were matched for A*56 levels but had vastly different plaque loads. Thus, A*56 is a likelier determinant of functional deficits in hAPP mice than fibrillar A deposits. Therapeutic interventions that reduce A fibrils at the cost of augmenting nonfibrillar A assemblies could be harmful. Alzheimer disease (AD)3 and many other neurodegenerative disorders are associated with the accumulation of abnormal protein assemblies in the central nervous system (CNS). Much evidence suggests that this association reflects a causal relationship in which the abnormal proteins actually trigger the neuronal dysfunction and degeneration that characterize these conditions (1-3). The prevalence of AD and other neurodegenerative proteinopathies is increasing rapidly around the world, most likely because of their age dependence, the increasing longevity of many populations, and the lack of effective strategies for treatment and prevention (4 -6). This alarming trend underlines the need to better understand the relationship between the accumulation of abnormal proteins in the CNS and the decline of neurological function.This relationship has been difficult to analyze in depth because proteins associated with neurodegenerative disorders can exist in diverse assembly states, and distinct assemblies can differ markedly in pathogenic potential. For example, the amyloid- (A) peptide, which seems to play a causal role in AD, can exist as monomers, low molecular weight oligomers (such as dimers and trimers), larger globular oligomers (such as A*56, A-derived diffusible ligands, amylospheroids, and globulomers), amyloid pores, protofibrils, fibrils, and amyloid plaques that contain densely packed A fibrils and a large number of other molecules and cellular elements (7-15). Which of these structures contributes most critically to neurological decline in AD is a matter of active study and debate that has important implications for therapeutic interventions. Studies of transgenic mice with neuronal expression of human amyloid precursor proteins (hAPP), from which A is released by proteolytic cleavage, suggest that nonfibrillar A assemblies are more critical than amyloid plaques in the pathogene...
Huntington's disease (HD) is an autosomal neurodegenerative disorder, characterized by severe behavioral, cognitive, and motor deficits. Since the discovery of the huntingtin gene (HTT) mutation that causes the disease, several mouse lines have been developed using different gene constructs of Htt. Recently, a new model, the zQ175 knock-in (KI) mouse, was developed (see description by Menalled et al, [1]) in an attempt to have the Htt gene in a context and causing a phenotype that more closely mimics HD in humans. Here we confirm the behavioral phenotypes reported by Menalled et al [1], and extend the characterization to include brain volumetry, striatal metabolite concentration, and early neurophysiological changes. The overall reproducibility of the behavioral phenotype across the two independent laboratories demonstrates the utility of this new model. Further, important features reminiscent of human HD pathology are observed in zQ175 mice: compared to wild-type neurons, electrophysiological recordings from acute brain slices reveal that medium spiny neurons from zQ175 mice display a progressive hyperexcitability; glutamatergic transmission in the striatum is severely attenuated; decreased striatal and cortical volumes from 3 and 4 months of age in homo- and heterozygous mice, respectively, with whole brain volumes only decreased in homozygotes. MR spectroscopy reveals decreased concentrations of N-acetylaspartate and increased concentrations of glutamine, taurine and creatine + phosphocreatine in the striatum of 12-month old homozygotes, the latter also measured in 12-month-old heterozygotes. Motor, behavioral, and cognitive deficits in homozygotes occur concurrently with the structural and metabolic changes observed. In sum, the zQ175 KI model has robust behavioral, electrophysiological, and histopathological features that may be valuable in both furthering our understanding of HD-like pathophyisology and the evaluation of potential therapeutic strategies to slow the progression of disease.
Human amyloid precursor protein (hAPP) transgenic mice with high levels of amyloid- (A) develop behavioral deficits that correlate with the depletion of synaptic activity-related proteins in the dentate gyrus. The tyrosine kinase Fyn is altered in Alzheimer's disease brains and modulates premature mortality and synaptotoxicity in hAPP mice. To determine whether Fyn also modulates A-induced behavioral deficits and depletions of synaptic activity-dependent proteins, we overexpressed Fyn in neurons of hAPP mice with moderate levels of A production. Compared with nontransgenic controls and singly transgenic mice expressing hAPP or FYN alone, doubly transgenic FYN/hAPP mice had striking depletions of calbindin, Fos, and phosphorylated ERK (extracellular signal-regulated kinase), impaired neuronal induction of Arc, and impaired spatial memory retention. These deficits were qualitatively and quantitatively similar to those otherwise seen only in hAPP mice with higher A levels. Surprisingly, levels of active Fyn were lower in high expresser hAPP mice than in NTG controls and lower in FYN/hAPP mice than in FYN mice. Suppression of Fyn activity may result from dephosphorylation by striatal-enriched phosphatase, which was upregulated in FYN/hAPP mice and in hAPP mice with high levels of A. Thus, increased Fyn expression is sufficient to trigger prominent neuronal deficits in the context of even relatively moderate A levels, and inhibition of Fyn activity may help counteract A-induced impairments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.