Human soluble (S) and membrane-bound (MB) catechol O-methyltransferase (COMT, EC 2.1.1.6) enzymes have been expressed at sufficiently high levels in Escherichia coli and in baculovirus-infected insect cells to allow kinetic characterization of the enzyme forms. The use of tight-binding inhibitors such as entacapone enabled the estimation of actual enzyme concentrations and, thereby, comparison of velocity parameters, substrate selectivity, and regioselectivity of the methylation of both enzyme forms. Kinetics of the methylation reaction of dopamine, (-)-noradrenaline, L-dopa, and 3,4-dihydroxybenzoic acid was studied in detail. Here, the catalytic number (Vmax) of S-COMT was somewhat higher than that of MB-COMT for all four substrates. The Km values varied considerably, depending on both substrate and enzyme form. S-COMT showed about 15 times higher Km values for catecholamines than MB-COMT. The distinctive difference between the enzyme forms was also the higher affinity of MB-COMT for the coenzyme S-adenosyl-L-methionine (AdoMet). The average dissociation constants Ks were 3.4 and 20.2 microM for MB-COMT and S-COMT, respectively. Comparison between the kinetic results and the atomic structure of S-COMT is presented, and a revised mechanism for the reaction cycle is discussed. Two recently published human COMT cDNA sequences differed in the position of S-COMT amino acid 108, the residue being either Val-108 [Lundström et al. (1991) DNA Cell. Biol. 10, 181-189] or Met-108 [Bertocci et al. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 1416-1420].(ABSTRACT TRUNCATED AT 250 WORDS)
Catechol O-methyltransferase (COMT, EC 2.1.1.6) is important in the central nervous system because it metabolizes catecholamine neurotransmitters such as dopamine. The enzyme catalyses the transfer of the methyl group from S-adenosyl-L-methionine (AdoMet) to one hydroxyl group of catechols. COMT also inactivates catechol-type compounds such as L-DOPA. With selective inhibitors of COMT in combination with L-DOPA, a new principle has been realized in the therapy of Parkinson's disease. Here we solve the atomic structure of COMT to 2.0 A resolution, which provides new insights into the mechanism of the methyl transfer reaction. The co-enzyme-binding domain is strikingly similar to that of an AdoMet-dependent DNA methylase, indicating that all AdoMet methylases may have a common structure.
A complex of carbonic anhydrase (CA) with one of its substrates, bicarbonate, has been studied crystallographically. Human isoenzyme II was mutated at position 200 from threonine to histidine, which results in higher affinity for bicarbonate. The HCO3- ion binds in the active site to the zinc ion as a pseudo-bidentate ligand which gives the metal a coordination geometry between tetrahedral and trigonal bipyramide. The water/hydroxide normally bound with tetrahedral coordination to the zinc is probably replaced by the OH group of the bicarbonate ion. The importance of residues Thr-199 and Glu-106 in controlling the binding orientation of HCO3- is discussed as well as the catalytic mechanism. Both the complex as well as the uncomplexed mutant were studied at 1.9 A resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.