A green deposition method of zinc oxide nanoparticles using coffee leaf extraction was successfully prepared. The use of these preparation techniques is accepted by many researchers because it is nonexpensive and simple and has no environmental impact during the operation. The determination and reduction of Zn ions to ZnO NPs were characterized by using a UV-visible spectroscope. The UV-visible spectroscopy result reveals that the large band gap energy is observed in the visible region at the wavelength of 300 nm. X-ray diffraction and SEM analysis confirm that the deposited nanoparticle is highly crystalline with (111), (222), and (100) planes and cubic shape structure. The coffee leaf extraction serves as a reducing agent for stability of the particle length, where its medicinal value outcome showed an important antibacteria of the pathogenic type which appeared on the wound. The present research deals with the green synthesis of ZnO NPs as well as its application in toxicity reduction.
Thin films of zinc sulfide (ZnS) with different concentrations of zinc acetate have been made by chemical bath deposition technique in acidic medium (pH = 5) on glass substrate using zinc acetate and sodium sulfide as sources of Zn+2 ion and S−2 ion, respectively, and ethylenediaminetetraacetate as complexing agents and sulfuric acid to adjust pH value at a constant deposition temperature of 85°C, and the deposition time of 90 minutes was used. The effect of the concentration of metallic precursor on the structural, morphological, and optical properties of chemical bath deposited zinc sulfide thin films was investigated in this study. The XRD result confirmed mixed phases of crystalline and amorphous structure dominating other phases, which is witnessed by larger crystallite size than other phases. It reveals that the thin films had hexagonal structure at the medium concentration with preferred orientation along (111) plane, and at lower and higher concentration, it showed that film has an amorphous structure in nature. The crystallinity of all the phases significantly enlarged with increasing the zinc precursor concentration. The SEM micrographs showed high-pitched edged irregular-shaped grains covering the substrate with pinholes and bangs. The optical properties investigated by the UV-VIS spectrometer specified a decrease in the optical bandgap of the films between 3.5 eV and 2.6 eV as the zinc acetate concentration in the solution increased from 0.1 to 0.2 M. It showed that the zinc sulfide had high absorption in the UV radiation. The main finding of this paper is that metallic precursor concentration has a significant role in the optical, morphological, and microstructural properties of the cobalt sulfide thin films, which are most suitable for photovoltaic applications.
This paper investigates the technique of biosynthesis of nanoparticles of zinc oxide from the extraction of moringa leaves. Many researchers recognize the use of this method of green culinary technique because it is cost-effective and has no negative impact on the environment; however, this paper focuses on the bacteria chosen for the green synthesis, which was not addressed by many of the researchers. The firmness and reduction of Zn ions in nanoparticles of zinc oxide were analyzed with a UV-visible spectroscope. Its results show that a wide bandgap was observed in the visible region at a wavelength of 350 nanometers. Extraction of moringa leaves serves as a promising agent for the balance of particle size. The result of medical value shows significant antibacterial activity in contrast to the type of pathogenic bacteria Escherichia coli and Staphylococcus aureus. From the XRD results, there are no further peaks that correspond to impurities that are discovered, demonstrating the great purity of the provided results.
The melt-quenching technique was used to produce 39CdO–10Al2O3-(51-x) P2O5: xMnO glasses (x = 0, 0.1, 0.2, 0.3, and 0.4 wt.%). Various stability factors were calculated and presented from DTA analysis. The stability of the glass network appears to increase with the increase of MnO concentration, according to the findings. IR spectral analysis of these glasses exhibited several symmetrical and asymmetrical bands due to phosphate groups. The observed change in these band intensities with the rise in MnO concentrations, ranging from 0.1 wt.% to 0.4 wt.%, shows an increase in the stability of the glass network. Optical absorption analyses of these glasses revealed an absorption band that shifted from 500 to 488 nm as the concentration of manganese oxide (MnO) increased from 0.1 wt.% to 0.4 wt.%, indicating that Mn2+ ions were gradually converted into Mn3+ ions. EPR spectra of these glasses were characterized by two signals due to Mn2+ and Mn3+ ions. Observations on these signal intensity variations revealed an increase in stability of the glass network with the increase of MnO concentration from 0.1 wt.% to 0.4 wt.%. Parameters, which describe the insulating characteristics, for example, dielectric constant, ε, dielectric loss, tan δ, and AC conductivity σac, were determined in relation to frequency (103 Hz to 105 Hz) and temperature (20°C to 400°C) and presented in the dielectric analysis of these glasses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.