Activation of the PTEN-PI3K-mTORC1 pathway consolidates metabolic programs that sustain cancer cell growth and proliferation1,2. Here we show that mTORC1 regulates polyamine dynamics, a metabolic route that is essential for oncogenicity. Through the use of integrative metabolomics in a mouse model3 and human biopsies4 of prostate cancer, we identified alterations in tumours impacting on the production of decarboxylated S-adenosylmethionine (dcSAM) and polyamine synthesis. Mechanistically, this metabolic rewiring stems from mTORC1-dependent regulation of S-adenosylmethionine decarboxylase 1 (AMD1) stability. This novel molecular regulation was validated in murine and human cancer specimens. AMD1 was upregulated in prostate cancer specimens with activated mTORC1. Conversely, samples from a clinical trial with the mTORC1 inhibitor everolimus5 exhibited a predominant decrease in AMD1 immunoreactivity that was associated to a decrease in proliferation, in line with the requirement of dcSAM production for oncogenicity. These findings provide fundamental information about the complex regulatory landscape controlled by mTORC1 to integrate and translate growth signals into an oncogenic metabolic program.
SUMMARY Mitochondrial respiration is tightly regulated in CD8 T cells during the transition from naïve to effector and memory cells, but the mechanisms that control this process have not been defined. Here we show that MCJ/DnaJC15 acts as an endogenous break for mitochondrial respiration in CD8 T cells by interfering with the formation of electron transport chain (ETC) respiratory supercomplexes. Metabolic profiling reveals an enhanced mitochondrial metabolism in MCJ-deficient CD8 cells. Increased oxidative phosphorylation and subcellular ATP accumulation caused by the loss of MCJ selectively increase the secretion, but not the expression, of IFNγ. MCJ also serves to adapt effector CD8 T cell metabolism during the contraction phase. Consequently, memory CD8 cells lacking MCJ are superior in providing protection against influenza virus infection. Thus, MCJ offers a novel mechanism for fine-tuning mitochondrial metabolism in CD8 cells, as an alternative to modulating mitochondrial mass, which is an energetically expensive process. MCJ could be a new therapeutic target to enhance CD8 cell responses.
Hematophagous arthropods are responsible for the transmission of a variety of pathogens that cause disease in humans and animals. Ticks of the Ixodes ricinus complex are vectors for some of the most frequently occurring human tick-borne diseases, particularly Lyme borreliosis and tick-borne encephalitis virus (TBEV). The search for vaccines against these diseases is ongoing. Efforts during the last few decades have primarily focused on understanding the biology of the transmitted viruses, bacteria and protozoans, with the goal of identifying targets for intervention. Successful vaccines have been developed against TBEV and Lyme borreliosis, although the latter is no longer available for humans. More recently, the focus of intervention has shifted back to where it was initially being studied which is the vector. State of the art technologies are being used for the identification of potential vaccine candidates for anti-tick vaccines that could be used either in humans or animals. The study of the interrelationship between ticks and the pathogens they transmit, including mechanisms of acquisition, persistence and transmission have come to the fore, as this knowledge may lead to the identification of critical elements of the pathogens’ life-cycle that could be targeted by vaccines. Here, we review the status of our current knowledge on the triangular relationships between ticks, the pathogens they carry and the mammalian hosts, as well as methods that are being used to identify anti-tick vaccine candidates that can prevent the transmission of tick-borne pathogens.
Salp15, a salivary protein of Ixodes ticks, inhibits the activation of naïve CD4 T cells. Treatment with Salp15 results in the inhibition of early signaling events and the production of the autocrine growth factor, interleukin-2. The fate of the CD4 T cells activated in the presence of Salp15 or its long-term effects are, however, unknown. We now show that Salp15 binding to CD4 is persistent and induces a long-lasting immunomodulatory effect. The activity of Salp15 results in sustained diminished cross-antigenic antibody production even after interruption of the treatment with the protein. Transcriptionally, the salivary protein provokes an acute effect that includes known activation markers, such as Il2 or Cd44, and that fades over time. The long-term effects exerted by Salp15 do not involve the induction of either anergy traits nor increased populations of regulatory T cells. Similarly, the treatment with Salp15 does not result in B cell anergy or the generation of myeloid suppressor cells. However, Salp15 induces the increased expression of the ectoenzyme, CD73, in regulatory T cells and increased production of adenosine. Our study provides a profound characterization of the immunomodulatory activity of Salp15 and suggests that its long-term effects are due to the specific regulation of CD73.
Recent evidences indicate that mitochondrial genes and function are decreased in active ulcerative colitis (UC) patients, in particular, the activity of Complex I of the electron transport chain is heavily compromised. MCJ is a mitochondrial inner membrane protein identified as a natural inhibitor of respiratory chain Complex I. The induction of experimental colitis in MCJ-deficient mice leads to the upregulation of Timp3 expression resulting in the inhibition of TACE activity that likely inhibits Tnf and Tnfr1 shedding from the cell membrane in the colon. MCJ-deficient mice also show higher expression of Myd88 and Tlr9, proinflammatory genes and disease severity. Interestingly, the absence of MCJ resulted in distinct microbiota metabolism and composition, including a member of the gut community in UC patients, Ruminococcus gnavus. These changes provoked an effect on IgA levels. Gene expression analyses in UC patients showed decreased levels of MCJ and higher expression of TIMP3, suggesting a relevant role of mitochondrial genes and function among active UC. The MCJ deficiency disturbs the regulatory relationship between the host mitochondria and microbiota affecting disease severity. Our results indicate that mitochondria function may be an important factor in the pathogenesis. All together support the importance of MCJ regulation during UC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.