T cell exhaustion limits immune responses against cancer and is a major cause of resistance to chimeric antigen receptor (CAR)–T cell therapeutics. Using murine xenograft models and an in vitro model wherein tonic CAR signaling induces hallmark features of exhaustion, we tested the effect of transient cessation of receptor signaling, or rest, on the development and maintenance of exhaustion. Induction of rest through enforced down-regulation of the CAR protein using a drug-regulatable system or treatment with the multikinase inhibitor dasatinib resulted in the acquisition of a memory-like phenotype, global transcriptional and epigenetic reprogramming, and restored antitumor functionality in exhausted CAR-T cells. This work demonstrates that rest can enhance CAR-T cell efficacy by preventing or reversing exhaustion, and it challenges the notion that exhaustion is an epigenetically fixed state.
Highlights d ChIRP-MS of SARS-CoV-2 RNA identifies viral RNA-host protein interaction networks d Comparative analysis identifies SARS-specific and multiviral RNA-protein complexes d SARS-CoV-2 interactome-focused CRISPR screens reveal a broad antiviral response d Host mitochondria serve as a general organelle platform for anti-SARS-CoV-2 immunity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.