Cysteine residues are concentrated at key functional sites within proteins, performing diverse roles in metal binding, catalysis, and redox chemistry. Chemoproteomic platforms to interrogate the reactive cysteinome have developed significantly over the past 10 years, resulting in a greater understanding of cysteine functionality, modification, and druggability. Recently, chemoproteomic methods to examine reactive cysteine residues from specific subcellular organelles have provided significantly improved proteome coverage and highlights the unique functionalities of cysteine residues mediated by cellular localization. Here, the diverse physicochemical properties of the mammalian subcellular organelles are explored in the context of their effects on cysteine reactivity. The unique functions of cysteine residues found in the mitochondria and endoplasmic reticulum are highlighted, together with an overview into chemoproteomic platforms employed to investigate cysteine reactivity in subcellular organelles.
Selenoproteins contain the amino acid selenocysteine (Sec) and are found in all domains of life. The functions of many selenoproteins are poorly understood, partly due to difficulties in producing recombinant selenoproteins for cellbiological evaluation. Endogenous mammalian selenoproteins are produced through a noncanonical translation mechanism requiring suppression of the UGA stop codon and a Sec insertion sequence (SECIS) element in the 3′ untranslated region of the mRNA. Here, recombinant selenoproteins are generated in mammalian cells through genetic code expansion, circumventing the requirement for the SECIS element and selenium availability. An engineered orthogonal E. coli leucyl-tRNA synthetase/tRNA pair is used to incorporate a photocaged Sec (DMNB-Sec) at the UAG amber stop codon. DMNB-Sec is successfully incorporated into GFP and uncaged by irradiation of living cells. Furthermore, DMNB-Sec is used to generate the native selenoprotein methionine-R-sulfoxide reductase B1 (MsrB1). Importantly, MsrB1 is shown to be catalytically active after uncaging, constituting the first use of genetic code expansion to generate a functional selenoprotein in mammalian systems. The ability to site-specifically introduce Sec directly in mammalian cells, and temporally modulate selenoprotein activity, will aid in the characterization of mammalian selenoprotein function.
Nucleophilic amino acids are important in covalent drug development yet underutilized as anti-microbial targets. Chemoproteomic technologies have been developed to mine chemically accessible residues via their intrinsic reactivity towards electrophilic probes but cannot discern which chemically reactive sites contribute to protein function and should therefore be prioritized for drug discovery. To address this, we have developed a CRISPR-based oligo recombineering (CORe) platform to support the rapid identification, functional prioritization and rational targeting of chemically reactive sites in haploid systems. Our approach couples protein sequence and function with biological fitness of live cells. Here we profile the electrophile sensitivity of proteinogenic cysteines in the eukaryotic pathogen Toxoplasma gondii and prioritize functional sites using CORe. Electrophile-sensitive cysteines decorating the ribosome were found to be critical for parasite growth, with target-based screening identifying a parasite-selective anti-malarial lead molecule and validating the apicomplexan translation machinery as a target for ongoing covalent ligand development.
The host cell invasion process of apicomplexan parasites like Toxoplasma gondii is facilitated by sequential exocytosis of the microneme, rhoptry and dense granule organelles. Exocytosis is facilitated by a double C2 domain (DOC2) protein family. This class of C2 domains is derived from an ancestral calcium (Ca2+) binding archetype, although this feature is optional in extant C2 domains. DOC2 domains provide combinatorial power to the C2 domain, which is further enhanced in ferlins that harbor 5–7 C2 domains. Ca2+ conditionally engages the C2 domain with lipids, membranes, and/or proteins to facilitating vesicular trafficking and membrane fusion. The widely conserved T. gondii ferlins 1 (FER1) and 2 (FER2) are responsible for microneme and rhoptry exocytosis, respectively, whereas an unconventional TgDOC2 is essential for microneme exocytosis. The general role of ferlins in endolysosmal pathways is consistent with the repurposed apicomplexan endosomal pathways in lineage specific secretory organelles. Ferlins can facilitate membrane fusion without SNAREs, again pertinent to the Apicomplexa. How temporal raises in Ca2+ combined with spatiotemporally available membrane lipids and post-translational modifications mesh to facilitate sequential exocytosis events is discussed. In addition, new data on cross-talk between secretion events together with the identification of a new microneme protein, MIC21, is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.