Graphical abstractHighlights► A new method for reconstruction of 3D fetal brain MRI from 2D slices is proposed. ► The super-resolution reconstruction is interleaved with motion correction. ► Corrupted or misaligned slices are automatically excluded. ► Novel intensity matching is shown to be essential for quality of reconstruction. ► Excellent results for clinical and optimized data.
EMPIRE10 (Evaluation of Methods for Pulmonary Image REgistration 2010) is a public platform for fair and meaningful comparison of registration algorithms which are applied to a database of intrapatient thoracic CT image pairs. Evaluation of nonrigid registration techniques is a nontrivial task. This is compounded by the fact that researchers typically test only on their own data, which varies widely. For this reason, reliable assessment and comparison of different registration algorithms has been virtually impossible in the past. In this work we present the results of the launch phase of EMPIRE10, which comprised the comprehensive evaluation and comparison of 20 individual algorithms from leading academic and industrial research groups. All algorithms are applied to the same set of 30 thoracic CT pairs. Algorithm settings and parameters are chosen by researchers expert in the configuration of their own method and the evaluation is independent, using the same criteria for all participants. All results are published on the EMPIRE10 website (http://empire10.isi.uu.nl). The challenge remains ongoing and open to new participants. Full results from 24 algorithms have been published at the time of writing. This paper details the organization of the challenge, the data and evaluation methods and the outcome of the initial launch with 20 algorithms. The gain in knowledge and future work are discussed.
Abstract. In this paper we introduce the concept of statistical deformation models (SDM) which allow the construction of average models of the anatomy and their variability. SDMs are build by performing a statistical analysis of the deformations required to map anatomical features in one subject into the corresponding features in another subject. The concept of SDMs is similar to active shape models (ASM) which capture statistical information about shapes across a population but offers several new advantages: Firstly, SDMs can be constructed directly from images such as MR or CT without the need for segmentation which is usually a prerequisite for the construction of active shape models. Instead a non-rigid registration algorithm is used to compute the deformations required to establish correspondences between the reference subject and the subjects in the population class under investigation. Secondly, SDMs allow the construction of an atlas of the average anatomy as well as its variability across a population of subjects. Finally, SDMs take the 3D nature of the underlying anatomy into account by analysing dense 3D deformation fields rather than only the 2D surface shape of anatomical structures. We demonstrate the applicability of this new framework to MR images of the brain and show results for the construction of anatomical models from 25 different subjects.
A novel method is introduced for the generation of landmarks for three-dimensional (3-D) shapes and the construction of the corresponding 3-D statistical shape models. Automatic landmarking of a set of manual segmentations from a class of shapes is achieved by 1) construction of an atlas of the class, 2) automatic extraction of the landmarks from the atlas, and 3) subsequent propagation of these landmarks to each example shape via a volumetric nonrigid registration technique using multiresolution B-spline deformations. This approach presents some advantages over previously published methods: it can treat multiple-part structures and requires less restrictive assumptions on the structure's topology. In this paper, we address the problem of building a 3-D statistical shape model of the left and right ventricle of the heart from 3-D magnetic resonance images. The average accuracy in landmark propagation is shown to be below 2.2 mm. This application demonstrates the robustness and accuracy of the method in the presence of large shape variability and multiple objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.