Motivation Complex diseases are due to the dense interactions of many disease-associated factors that dysregulate genes that in turn form the so-called disease modules, which have shown to be a powerful concept for understanding pathological mechanisms. There exist many disease module inference methods that rely on somewhat different assumptions, but there is still no gold standard or best-performing method. Hence, there is a need for combining these methods to generate robust disease modules. Results We developed MODule IdentiFIER (MODifieR), an ensemble R package of nine disease module inference methods from transcriptomics networks. MODifieR uses standardized input and output allowing the possibility to combine individual modules generated from these methods into more robust disease-specific modules, contributing to a better understanding of complex diseases. Availability and implementation MODifieR is available under the GNU GPL license and can be freely downloaded from https://gitlab.com/Gustafsson-lab/MODifieR and as a Docker image from https://hub.docker.com/r/ddeweerd/modifier. Supplementary information Supplementary data are available at Bioinformatics online.
Background Hub transcription factors, regulating many target genes in gene regulatory networks (GRNs), play important roles as disease regulators and potential drug targets. However, while numerous methods have been developed to predict individual regulator-gene interactions from gene expression data, few methods focus on inferring these hubs. Results We have developed ComHub, a tool to predict hubs in GRNs. ComHub makes a community prediction of hubs by averaging over predictions by a compendium of network inference methods. Benchmarking ComHub against the DREAM5 challenge data and two independent gene expression datasets showed a robust performance of ComHub over all datasets. Conclusions In contrast to other evaluated methods, ComHub consistently scored among the top performing methods on data from different sources. Lastly, we implemented ComHub to work with both predefined networks and to perform stand-alone network inference, which will make the method generally applicable.
Motivation Network-based disease modules have proven to be a powerful concept for extracting knowledge about disease mechanisms, predicting for example disease risk factors and side effects of treatments. Plenty of tools exist for the purpose of module inference, but less effort has been put on simultaneously utilizing knowledge about regulatory mechanisms for predicting disease module hub regulators. Results We developed MODalyseR, a novel software for identifying disease module regulators and reducing modules to the most disease associated genes. This pipeline integrates and extends previously published software packages MODifieR and ComHub and hereby provides a user-friendly network medicine framework combining the concepts of disease modules and hub regulators for precise disease gene identification from transcriptomics data. To demonstrate the usability of the tool, we designed a case study for multiple sclerosis that revealed IKZF1 as a promising hub regulator, which was supported by independent ChIP-seq data Availability MODalyseR is available as a Docker image at https://hub.docker.com/r/ddeweerd/modalyser with user guide and installation instructions found at https://gustafsson-lab.gitlab.io/MODalyseR/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.