Detailed understanding of the elastic properties and mechanical durability of ceramic materials is crucial for their utilization in advanced microelectronic or micro-electromechanic devices. We have systematically investigated the elastic properties of 97 binary d-metal oxides using hybrid density functional methods. We report the polycrystalline and single-crystal bulk moduli and the symmetrized elastic constants of the studied oxides and compare the elastic properties with experimental information where available. We discuss the periodic trends of several key structure types, namely, rutile, corundum, and rocksalt, in detail. The calculated bulk moduli and elastic constants of the nonmagnetic and magnetic d-metal oxides are in reasonable overall agreement with experiment, but some materials show relatively large discrepancies between the calculated and experimental bulk moduli. In several cases, such as MnO, CoO, NiO, ReO3, and ZrO2 (tP6), some of the elastic constants calculated for ideal single crystals at 0 K are clearly different from the experimentally determined elastic constants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.