Heterotrimeric G-proteins are signal transduction complexes comprised of three subunits, Gα, Gβ, and Gγ, and are involved in many aspects of plant life. The non-canonical Gα subunit EXTRA LARGE G-PROTEIN2 (XLG2) mediates pathogen-associated molecular pattern (PAMP)-induced reactive oxygen species (ROS) generation and immunity downstream of pattern recognition receptors. A mutant of the chitin receptor component CHITIN ELICITOR RECEPTOR KINASE1 (CERK1), cerk1-4, maintains normal chitin signaling capacity but shows excessive cell death upon infection with powdery mildew fungi. We identified XLG2 mutants as suppressors of the cerk1-4 phenotype. Mutations in XLG2 complex partners ARABIDOPSIS Gβ1 (AGB1) and Gγ1 (AGG1) have a partial cerk1-4 suppressor effect. Contrary to its role in PAMP-induced immunity, XLG2-mediated control of ROS production by RESPIRATORY BURST OXIDASE HOMOLOGUE D (RBOHD) is not critical for cerk1-4–associated cell death and hyperimmunity. The cerk1-4 phenotype is also independent of the co-receptor/adapter kinases BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) and SUPPRESSOR OF BIR1 1 (SOBIR1), but requires the E3 ubiquitin ligase PLANT U-BOX 2 (PUB2). XLG2 localizes to both the cell periphery and nucleus, and the cerk1-4 cell death phenotype is mediated by the cell periphery pool of XLG2. Integrity of the XLG2 N-terminal domain, but not its phosphorylation, is essential for correct XLG2 localization and formation of the cerk1-4 phenotype. Our results support a model in which XLG2 acts downstream of an unknown cell surface receptor that activates an NADPH oxidase–independent cell death pathway in Arabidopsis (Arabidopsis thaliana).
Heterotrimeric G-Proteins are signal transduction complexes comprised of three subunits, Gα, Gβand Gγ, and are involved in many aspects of plant life. The non-canonical Gα subunit XLG2 mediates PAMP-induced ROS generation and immunity downstream of PRRs. A mutant of the chitin receptor component CERK1, cerk1-4, maintains normal chitin signalling capacity, but shows excessive cell death upon infection with powdery mildews. We identified XLG2 mutants as suppressors of the cerk1-4 phenotype. We generated stably transformed Arabidopsis lines expressing Venus-XLG2 and numerous mutated variants. These were analysed by confocal microscopy, Western blotting and pathogen infection. We also crossed cerk1-4 with several mutants involved in immunity and analysed their phenotype. Phosphorylation of XLG2 was investigated by quantitative proteomics. Mutations in XLG2 complex partners AGB1 and AGG1 have a partial cerk1-4 suppressor effect. The cerk1-4 phenotype is independent of NADPH oxidase-generated ROS, BAK1 and SOBIR1, but requires PUB2. XLG2 mediates cerk1-4 cell death at the cell periphery. Integrity of the XLG2 N-terminal domain, but not its phosphorylation, is essential for correct XLG2 localisation and cerk1-4 signalling. Our results suggest that XLG2 transduces signals from an unknown cell surface receptor that activates an apoplastic ROS-independent cell death pathway in Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.