Protein A chromatography is the most common unit operation used in the manufacture of therapeutic monoclonal antibodies (mAbs) due to its high affinity and specificity for the IgG Fc domain. However, protein A chromatography is often not effective for viral clearance. Typical log reduction values (LRV) for the model retrovirus XMuLV range between 1 and 4 logs, while effective steps such as viral filtration can achieve 5-7 logs of clearance. XMuLV LRVs obtained on protein A are reproducible for a given mAb, but can vary widely for different mAbs, even with the same operating conditions. In order to understand the mechanism of XMuLV clearance on protein A, we have investigated its partitioning on Mabselect SuRe protein A resin and explored how the virus interacts with resin, product, and impurities. The results show that XMuLV has some interaction with the resin backbone and ligand, but also appears to bind to and coelute with the mAb. The interaction with product was further examined by evaluating the effect of feed conditions, loading, and different washes on XMuLV partitioning on the column. Understanding the mechanism of XMuLV removal on a protein A, resin provides insight into the variability and low viral clearance of this step and suggests ways in which the removal of virus by this step can be improved.
One measure taken to ensure safety of biotherapeutics produced in mammalian cells is to demonstrate the clearance of potential viral contaminants by downstream purification processes. This paper provides evidence that cation exchange chromatography (CEX), a widely used polishing step for monoclonal antibody (mAb) production, can effectively and reproducibly remove xMuLV, a retrovirus used as a model of non-infectious retrovirus-like particles found in Chinese hamster ovary cells. The dominant mechanism for xMuLV clearance by the strong cation exchanger, Fractogel SO ₃⁻, is by retention of the virus via adsorption instead of inactivation. Experimental data defining the design space for effective xMuLV removal by Fractogel SO ₃⁻ with respect to operational pH, elution ionic strength, loading, and load/equilibration buffer ionic strength are provided. Additionally, xMuLV is able to bind to other CEX resins, such as Fractogel COO⁻ and SP Sepharose Fast Flow, suggesting that this phenomenon is not restricted to one type of CEX resin. Taken together, the data indicate that CEX chromatography can be a robust and reproducible removal step for the model retrovirus xMuLV.
Summary
This review seeks to explain three features of viral respiratory illnesses that have perplexed generations of virologists: (1) the seasonal timing of respiratory illness and the rapid response of outbreaks to weather, specifically temperature; (2) the common viruses causing respiratory illness worldwide, including year‐round disease in the Tropics; (3) the rapid arrival and termination of epidemics caused by influenza and other viruses. The inadequacy of the popular explanations of seasonality is discussed, and a simple hypothesis is proposed, called temperature dependent viral tropism (TDVT), that is compatible with the above features of respiratory illness. TDVT notes that viruses can spread more effectively if they
moderate
their pathogenicity (thereby maintaining host mobility) and suggests that endemic respiratory viruses accomplish this by developing thermal sensitivity within a range that supports organ‐specific viral tropism within the human body, whereby they replicate most rapidly at
temperatures below body temperature
. This can confine them to the upper respiratory tract and allow them to avoid infecting the lungs, heart, gut etc. Biochemical and tissue‐culture studies show that ‘wild’ respiratory viruses show such natural thermal sensitivity. The typical early autumn surge of colds and the occurrence of respiratory illness in the Tropics year‐round at intermediate levels are explained by the tendency for strains to adapt their thermal sensitivity to their local climate and season. TDVT has important practical implications for preventing and treating respiratory illness including Covid‐19. It is testable with many options for experiments to increase our understanding of viral seasonality and pathogenicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.