Specific research reactors are capable of reproducing reactivity injection accidents in order to study the behavior of the nuclear fuel pins in accidental situations. In the CABRI research reactor, the fuel pin to be examined (test pin) is placed in the center of the core in a dedicated test loop. It is then subjected to a power transient, obtained by the fast depressurization of the 3He neutron absorber gas from the transient rods located in the core. One of the central parameters of the experiment is the energy deposition in the test pin, which is currently not measured during a transient. Instead, it is assumed that the relative energy distribution between the core and the test pin is constant regardless the operational state of the reactor. Currently, this correlation is measured in steady state. As such, the impact of the variations in the neutron flux, fuel and moderator temperatures during the transient is assumed equivalent on the energy deposition in the core and in the test pin. The goal of this work is to improve our knowledge on the mechanisms involved in the transient energy deposition. The aim of this paper is to present a methodological approach for the energy deposition estimation during a CABRI transient, based on static Monte Carlo calculations. The results suggest that the transient energy deposition rate is mainly dependent on the helium pressure and the Doppler feedback, and the relative energy distribution between the core and test pin changes during the transient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.