Highlights d A human organoid biobank combines hormone labeling and enteroendocrine cell generation d Transcriptomic profiling of human enteroendocrine cells uncovers differences with mice d Functional validation of EEC receptors and transcription factors d Secretome analysis reveals the repertoire of enteroendocrine secreted products
Background: Uncontrolled proteolysis contributes to cell injury and organ dysfunction in animal models of circulatory shock. We investigated in humans the relationship between septic shock, proteolysis, and outcome. Methods: Intensive care patients with septic shock (n¼29) or sepsis (n¼6) and non-hospitalised subjects (n¼9) were recruited as part of the prospective observational trial 'ShockOmics' (ClinicalTrials.gov Identifier NCT02141607). A mass spectrometry-based approach was used to analyse the plasma peptidomes and the origin of circulating peptides from proteolysis in the enrolled subjects. Results: Evidence of systemic proteolysis was indicated by a larger number of circulating peptides in septic shock patients, compared with septic patients and non-hospitalised healthy subjects. The peptide count and abundance in the septic shock patients were greater in patients who died (n¼6) than in survivors (n¼23), suggesting an association between magnitude of proteolysis and outcome. In silico analysis of the peptide sequences and of the sites of cleavage on the proteins of origin indicated a predominant role for serine proteases, such as chymotrypsin, and matrix metalloproteases in causing the observed proteolytic degradation. Conclusions: Systemic proteolysis is a novel fundamental pathological mechanism in septic shock. Plasma peptidomics is proposed as a new tool to monitor clinical trajectory in septic shock patients. Clinical trial registration: NCT02141607.
In this work, we examined plasma metabolome, proteome and clinical features in patients with severe septic shock enrolled in the multicenter ALBIOS study. The objective was to identify changes in the levels of metabolites involved in septic shock progression and to integrate this information with the variation occurring in proteins and clinical data. Mass spectrometry-based targeted metabolomics and untargeted proteomics allowed us to quantify absolute metabolites concentration and relative proteins abundance. We computed the ratio D7/D1 to take into account their variation from day 1 (D1) to day 7 (D7) after shock diagnosis. Patients were divided into two groups according to 28-day mortality. Three different elastic net logistic regression models were built: one on metabolites only, one on metabolites and proteins and one to integrate metabolomics and proteomics data with clinical parameters. Linear discriminant analysis and Partial least squares Discriminant Analysis were also implemented. All the obtained models correctly classified the observations in the testing set. By looking at the variable importance (VIP) and the selected features, the integration of metabolomics with proteomics data showed the importance of circulating lipids and coagulation cascade in septic shock progression, thus capturing a further layer of biological information complementary to metabolomics information.
Type 1 diabetes (T1D) results from autoimmune destruction of β-cells in the pancreas. Protein tyrosine phosphatases (PTPs) are candidate genes for T1D and play a key role in autoimmune disease development and β-cell dysfunction. Here, we assessed the global protein and individual PTP profiles in the pancreas from early onset non-obese diabetic (NOD) mice treated with an anti-CD3 monoclonal antibody and interleukin-1 receptor antagonist. The treatment reversed hyperglycemia and we observed enhanced expression of PTPN2, a PTP family member and T1D candidate gene, and endoplasmic reticulum (ER) chaperones in the pancreatic islets. To address the functional role of PTPN2 in β-cells, we generated PTPN2-deficient human stem cell-derived β-like and EndoC-βH1 cells. Mechanistically, we demonstrated that PTPN2 inactivation in β-cells exacerbates type I and type II interferon signaling networks and the potential progression towards autoimmunity. Moreover, we established the capacity of PTPN2 to positively modulate the Ca2+-dependent unfolded protein response and ER stress outcome in β-cells. Adenovirus-induced overexpression of PTPN2 partially protected from ER-stress induced β-cell death. Our results postulate PTPN2 as a key protective factor in β-cells during inflammation and ER stress in autoimmune diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.