Fiber reinforcement is currently most often used in floors, railway sleepers, prefabricated structural elements such as slabs, beams and tanks, and in small architecture elements. Designing elements or structures made of fiber-reinforced concrete requires knowledge of its basic mechanical parameters. In the case of concretes with metallic fibers, the literature can find many tests and standard guidelines regarding compressive, flexural, tensile strength and fracture energy. The properties of concretes with non-metallic fibers are slightly less recognized, especially concretes with new types of polymer fibers. Additionally, the lack of standardized methods of testing concrete with polymer fibers make their application much more difficult. In the article, the possibility of using the EN 14651 standard to assess the flexural tensile strength of concrete with the addition of 2.0 and 3.0 kg/m3 of synthetic fibers with different geometry and form was presented. There was a 5.5–13.5% increase in the flexural tensile strength depending on the mixture type. Moreover, in the case of fiber-reinforced concretes, the ductility was enhanced and the samples were characterized by significant residual flexural tensile strengths. Additionally, from the workability tests it was concluded that after the incorporation of fibers, the consistency class decreased by one, two or three. Nevertheless, the compressive strengths of concrete with and without fibers were very similar to each other, and varied from 58.05 to 61.31 MPa. Moreover, it was concluded that results obtained from three-point bending tests significantly differed from empirical formulas for the calculation of the flexural tensile strength of fiber-reinforced concretes with dispersed steel fibers present in the literature. As a result, the new formula determined by the authors was proposed for concrete with polymer fibers with a nominal fiber content ≤1.0% and slenderness of up to 200. It must be mentioned that the formula gave a very good agreement with studies presented in different literature positions. In addition, an attempt was made to evaluate the strengths of tested mixes in accordance with the Model Code 2010. However, it occurred that the proposed fiber-reinforced concrete mixtures would not be able to replace traditional reinforcement in a form of steel bars. Furthermore, in uniaxial tensile tests, it was not possible to determine the σ–w graphs, and received results for maximum tensile strength did not show the clear influence of fibers incorporation on concrete. Then, the fracture energy enhancement (from about 16 to 22 times) and dependencies: crack mouth opening displacement–deflection; crack mouth opening displacement–crack tip opening displacement; and crack tip opening displacement–deflection were analyzed. Finally, the results from flexural tensile tests were compared with measurements of the surface displacement field obtained through the Digital Image Correlation technique. It was concluded that this technique can be successfully used to determine the crack mouth and crack tip opening displacements with very high accuracy.
The article highlights that glass fiber reinforced concretes (GFRC) can meet the requirements of Smart City better than ordinary concretes. The comprehensive discussion on GFRC composition is presented together with the review of glass fibers’ influence on various concrete properties. First of all, because of their bridging abilities, they can limit the width, length, and total area of cracks. Additionally, GFRC are characterized by enhanced tensile, flexural, and splitting strength; impact, abrasion, spalling, fire, and freeze-thaw resistance as well as ductility, toughness, and permeability. All of this positively influences the mechanical behavior, durability, and corrosion resistance of concrete elements. Moreover, decreased thermal conductivity allows for better energy performance from the building’s point of view. This results in cheaper structures both in manufacturing and maintaining even though GFRC are more expensive materials. However, mechanical properties enhance as long as sufficient workability and uniform fiber distribution are assured. From the environmental point of view, GFRC are eco-friendlier materials than ordinary concretes since their application can decrease the emission of CO2 by 17%. The article also describes the GFRC application fields and emphasizes the possibility of the creation of not only structural elements mainly intended for load transferring but also elements accompanying the building process, as well as elements of small architecture that make public spaces more attractive, durable, and safer. Owing to greater design and shaping freedom, GFRC can also better fulfill the needs of habitants of Smart City.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.