We present a comprehensive survey on the gastrointestinal digestion of a relevant allergenic food on level of the peptidome, including the first systematic characterization and quantification of degradation products. This provides information on the differential resistance of plant food allergens and their structural elements undergoing digestion and forms the basis for a deeper understanding of the molecular principles responsible for sensitization to food allergy.
TET dioxygenases convert 5-methylcytosine (5mC) preferentially in a CpG context into 5-hydroxymethylcytosine (5hmC) and higher oxidized forms, thereby initiating DNA demethylation, but details regarding the effects of the DNA sequences flanking the target 5mC site on TET activity are unknown. We investigated oxidation of libraries of DNA substrates containing one 5mC or 5hmC residue in randomized sequence context using single molecule readout of oxidation activity and sequence and show pronounced 20 and 70-fold flanking sequence effects on the catalytic activities of TET1 and TET2, respectively. Flanking sequence preferences were similar for TET1 and TET2 and also for 5mC and 5hmC substrates. Enhanced flanking sequence preferences were observed at non-CpG sites together with profound effects of flanking sequences on the specificity of TET2. TET flanking sequence preferences are reflected in genome-wide and local patterns of 5hmC and DNA demethylation in human and mouse cells indicating that they influence genomic DNA modification patterns in combination with locus specific targeting of TET enzymes.
Allergic reactions to food are among the major food safety concerns in industrialized countries, and it is estimated that approximately 5% of the population suffers from immunoglobulin-E-mediated food allergy. High-resolution mass spectrometry has become one of the most important techniques for the molecular characterization of allergens, including structural modification, degradation in the gastrointestinal environment, or identification of suitable marker peptides for the development of novel analytical approaches, in the past decade. This perspective aims to briefly summarize the current situation and discuss future developments.
Scope: Chickpea (Cicer arietinum) allergy has frequently been reported particularly in Spain and India. Nevertheless, chickpea allergens are poorly characterized. The authors aim to identify and characterize potential allergens from chickpea. Methods and Results: Candidate proteins are selected by an in silico approach or immunoglobuline E (IgE)-testing. Potential allergens are prepared as recombinant or natural proteins and characterized for structural integrity by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), circular dichroism (CD)-spectroscopy, and mass spectrometry (MS) analysis. IgE-sensitization pattern of Spanish chickpea allergic and German peanut and birch pollen sensitized patients are investigated using chickpea extracts and purified proteins. Chickpea allergic patients show individual and heterogeneous IgE-sensitization profiles with extracts from raw and boiled chickpeas. Chickpea proteins pathogenesis related protein family 10 (PR-10), a late embryogenesis abundant protein (LEA/DC-8), and a vicilin-containing fraction, but not 2S albumin, shows IgE reactivity with sera from chickpea, birch pollen, and peanut sensitized patients. Remarkably, allergenic vicilin, DC-8, and PR-10 are detected in the extract of boiled chickpeas. Conclusion: Several IgE-reactive chickpea allergens are identified. For the first time a yet not classified DC-8 protein is characterized as minor allergen (Cic a 1). Finally, the data suggest a potential risk for peanut allergic patients by IgE cross-reactivity with homologous chickpea proteins.
The present information age is characterized by an ever-increasing digitalization. Smart devices quantify our entire lives. These collected data provide the foundation for data-driven services called smart services. They are able to adapt to a given context and thus tailor their functionalities to the user’s needs. It is therefore not surprising that their main resource, namely data, is nowadays a valuable commodity that can also be traded. However, this trend does not only have positive sides, as the gathered data reveal a lot of information about various data subjects. To prevent uncontrolled insights into private or confidential matters, data protection laws restrict the processing of sensitive data. One key factor in this regard is user-friendly privacy mechanisms. In this paper, we therefore assess current state-of-the-art privacy mechanisms. To this end, we initially identify forms of data processing applied by smart services. We then discuss privacy mechanisms suited for these use cases. Our findings reveal that current state-of-the-art privacy mechanisms provide good protection in principle, but there is no compelling one-size-fits-all privacy approach. This leads to further questions regarding the practicality of these mechanisms, which we present in the form of seven thought-provoking propositions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.