Endometriosis is characterized by growth of endometrial tissue at ectopic locations. Down-regulation of microRNA miR-200b is observed in endometriosis and malignant disease, driving tumour cells towards an invasive state by enhancing epithelial-to-mesenchymal transition (EMT). miR-200b up-regulation may inhibit EMT and invasive growth in endometriosis. To study its functional impact on the immortalized endometriotic cell line 12Z, the stromal cell line ST-T1b, and primary endometriotic stroma cells, a transient transfection approach with microRNA precursors was employed. Expression of bioinformatically predicted targets of miR-200b was analysed by qPCR. The cellular phenotype was monitored by Matrigel invasion assays, digital-holographic video microscopy and flow cytometry. qPCR revealed significant down-regulation of ZEB1 (P < 0.05) and ZEB2 (P < 0.01) and an increase in E-cadherin (P < 0.01). miR-200b overexpression decreased invasiveness (P < 0.0001) and cell motility (P < 0.05). In contrast, cell proliferation (P < 0.0001) and the stemness-associated side population phenotype (P < 0.01) were enhanced following miR-200b transfection. These properties were possibly due to up-regulation of the pluripotency-associated transcription factor KLF4 (P < 0.05) and require attention when considering therapeutic strategies. In conclusion, up-regulation of miR-200b reverts EMT, emerging as a potential therapeutic approach to inhibit endometriotic cell motility and invasiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.