Campylobacter jejuni (C. jejuni) is the most common cause of foodborne gastroenteritis worldwide. The bacteria induce diarrhea and inflammation by invading the intestinal epithelium. Curcumin is a natural polyphenol from turmeric rhizome of Curcuma longa, a medical plant, and is commonly used in curry powder. The aim of this study was the investigation of the protective effects of curcumin against immune-induced epithelial barrier dysfunction in C. jejuni infection. The indirect C. jejuni-induced barrier defects and its protection by curcumin were analyzed in co-cultures with HT-29/B6-GR/MR epithelial cells together with differentiated THP-1 immune cells. Electrophysiological measurements revealed a reduction in transepithelial electrical resistance (TER) in infected co-cultures. An increase in fluorescein (332 Da) permeability in co-cultures as well as in the germ-free IL-10−/− mouse model after C. jejuni infection was shown. Curcumin treatment attenuated the C. jejuni-induced increase in fluorescein permeability in both models. Moreover, apoptosis induction, tight junction redistribution, and an increased inflammatory response—represented by TNF-α, IL-1β, and IL-6 secretion—was observed in co-cultures after infection and reversed by curcumin. In conclusion, curcumin protects against indirect C. jejuni-triggered immune-induced barrier defects and might be a therapeutic and protective agent in patients.
Campylobacter is the major bacterial agent of human gastroenteritis worldwide and represents a crucial global public health burden. Species differentiation of C. jejuni and C. coli and phylogenetic analysis is challenged by inter-species horizontal gene transfer. Routine real-time PCR on more than 4000 C. jejuni and C. coli field strains identified isolates with ambiguous PCR results for species differentiation, in particular, from the isolation source eggs. K-mer analysis of whole genome sequencing data indicated the presence of C. coli hybrid strains with huge amounts of C. jejuni introgression. Recombination events were distributed over the whole chromosome. MLST typing was impaired, since C. jejuni sequences were also found in six of the seven housekeeping genes. cgMLST suggested that the strains were phylogenetically unrelated. Intriguingly, the strains shared a stress response set of C. jejuni variant genes, with proposed roles in oxidative, osmotic and general stress defence, chromosome maintenance and repair, membrane transport, cell wall and capsular biosynthesis and chemotaxis. The results have practical impact on routine typing and on the understanding of the functional adaption to harsh environments, enabling successful spreading and persistence of Campylobacter. Since 2005, Campylobacter is the major zoonotic agent in the European Union, causing 250,161 confirmed campylobacteriosis cases in 2017 1. Around one third of the cases can be directly attributed to handling, preparation and consumption of broiler meat 2. Measures for Campylobacter reduction focus on virulence mechanisms and persistence factors, enabling the pathogen to successfully circulate within the food chain. Typing of Campylobacter by species differentiation methods and by multi-locus sequence typing (MLST) has become key tools for diagnostics and source attribution. Specific gene targets have proven stable and were, therefore, chosen for this purpose. Two of commonly used species differentiation markers 3-5 are mapA, a fitness factor in chicken colonization 6 and ceuE playing a role in iron acquisition 7. For MLST, central enzymatic functions, which are conserved in the genome were defined 8 and are commonly used for phylogenetic analysis. It was shown that high level of interspecies transfer of genetic material can occur between C. jejuni and C. coli 9. Adaptation to hosts can modulate the gene pool and allele variants and was suggested to be of more relevance than geographical location 10. Here we identified extensive interspecies gene transfer from C. jejuni to C. coli, impairing species differentiation and MLST analysis. Whole genome sequencing revealed that these hybrid strains shared C. jejuni gene variants, involved in stress response. Since the hybrids had predominantly been isolated from egg shells, we suggest that gene variations due to C. jejuni sequence introgression might have been a consequence of selection of survivors in a harsh environment.
Thermophilic Campylobacter, in particular Campylobacter jejuni, C. coli and C. lari are the main relevant Campylobacter species for human infections. Due to their high capacity of genetic exchange by horizontal gene transfer (HGT), rapid adaptation to changing environmental and host conditions contribute to successful spreading and persistence of these foodborne pathogens. However, extensive HGT can exert dangerous side effects for the bacterium, such as the incorporation of gene fragments leading to disturbed gene functions. Here we discuss mechanisms of HGT, notably natural transformation, conjugation and bacteriophage transduction and limiting regulatory strategies of gene transfer. In particular, we summarize the current knowledge on how the DNA macromolecule is exchanged between single cells. Mechanisms to stimulate and to limit HGT obviously coevolved and maintained an optimal balance. Chromosomal rearrangements and incorporation of harmful mutations are risk factors for survival and can result in drastic loss of fitness. In Campylobacter, the restricted recognition and preferential uptake of free DNA from relatives are mediated by a short methylated DNA pattern and not by a classical DNA uptake sequence as found in other bacteria. A class two CRISPR-Cas system is present but also other DNases and restriction–modification systems appear to be important for Campylobacter genome integrity. Several lytic and integrated bacteriophages have been identified, which contribute to genome diversity. Furthermore, we focus on the impact of gene transfer on the spread of antibiotic resistance genes (resistome) and persistence factors. We discuss remaining open questions in the HGT field, supposed to be answered in the future by current technologies like whole-genome sequencing and single-cell approaches.
In nonmodel systems, genetic research is often limited by the lack of techniques for the generation and identification of gene mutations. One approach to overcome this bottleneck is the application of transposons for gene tagging. We have established a two-element transposon tagging system, based on the transposable elements Activator (Ac)/Dissociation (Ds) from maize, for in vivo insertion mutagenesis in the fungal human pathogen Candida albicans. A nonautonomous Ds transposon carrying a selectable marker was constructed into the ADE2 promoter on chromosome 3 and a codon usage-adapted Ac transposase gene was inserted into the neutral NEUT5L locus on chromosome 5. In C. albicans cells expressing the transposase, the Ds element efficiently excised and reintegrated elsewhere in the genome, which makes the Ac/Ds transposons promising tools for saturating insertion mutagenesis in clinical strains of C. albicans.
Campylobacter jejuni has a large adaptive potential due to enormous genetic exchange. Factors regulating natural transformation in this food-borne pathogen are largely unknown but of interest for the application of sustained reduction strategies in the food-processing industry. Using a single cell DNA uptake assay, we visualized that recognition of methylated C. jejuni DNA was essential for the first step of DNA uptake into a DNase resistant state. Transformation rates using a resistance marker correlated with the fraction of competent bacteria, harboring one to maximally four locations of active DNA uptake, not necessarily being located at the cell pole. Competence developed with rising pH between 6.5 and 7.5 under microaerobic conditions and was nearly insensitive towards growth temperatures between 32 °C and 42 °C, CO2 concentrations ranging from 0 to 50% and growth rates. However, competence development was abolished at pH 5 or under aerobic stress conditions, in which the bacteria ceased growth but fully survived. The DNA uptake machinery in competent bacteria shut down at slightly acidic pH and was reversibly switched on upon neutralization. It was dependent on the proton motive force and, in contrast to competence development, slightly enhanced under aerobic conditions. The results suggest that natural transformation in C. jejuni occurs in the neutral and microaerobic intestinal environment for enhanced genetic diversity and pre-adaption before host switch. In addition, highly competent bacteria might be shed into the environment, still able to acquire genetic material for increased survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.