By 2020, the elderly (≥65-year-old) world population is projected to exceed one billion individuals. This demographic megatrend has brought topics such as physiological age and frailty to the forefront of medical research efforts around the globe. The concept of frailty has evolved significantly since the mid-twentieth century. The outdated stereotype of a "thin, stooped, slow octogenarian" has transitioned to a more scientific and objective understanding of the problem. Still, a comprehensive and concise definition of "frailty" remains elusive. Until such a definition is firmly established and universally agreed upon, clinicians continue to rely on the somewhat subjective conceptual framework of today. In this chapter, the authors review key issues pertaining to clinical management of frail patients, including diagnosis/identification, preventive strategies, therapeutic approaches, and common pitfalls. The relationship between frailty, various domains of life, and functional status is also discussed. Finally, we will touch upon the concepts of end-of-life and goals of care, focusing on their relationship to frailty.
Cophotolysis of noradamantyldiazirine with the phenanthride precursor of dichlorocarbene or phenylchlorodiazirine in pentane at room temperature produces noradamantylethylenes in 11% yield with slight diastereoselectivity. Cophotolysis of adamantyldiazirine with phenylchlorodiazirine in pentane at room temperature generates adamantylethylenes in 6% yield with no diastereoselectivity. (1)H NMR showed the reaction of noradamantyldiazirine + phenylchlorodiazirine to be independent of solvent, and the rate of noradamantyldiazirine consumption correlated with the rate of ethylene formation. Laser flash photolysis showed that reaction of phenylchlorocarbene + adamantene was independent of adamantene concentration. The reaction of phenylchlorocarbene + homoadamantene produces the ethylene products with k = 9.6 × 10(5) M(-1) s(-1). Calculations at the UB3LYP/6-31+G(d,p) and UM062X/6-31+G(d,p)//UB3LYP/6-31+G(d,p) levels show the formation of exocyclic ethylenes to proceed (a) on the singlet surface via stepwise addition of phenylchlorocarbene (PhCCl) to bridgehead alkenes adamantene and homoadamantene, respectively, producing an intermediate singlet diradical in each case, or (b) via addition of PhCCl to the diazo analogues of noradamantyl- and adamantyldiazirine. Preliminary direct dynamics calculations on adamantene + PhCCl show a high degree of recrossing (68%), indicative of a flat transition state surface. Overall, 9% of the total trajectories formed noradamantylethylene product, each proceeding via the computed singlet diradical.
A comprehensive discussion of "never events" or preventable and grievously shocking medical errors that may result in serious morbidity and mortality is incomplete without a thorough analysis of wrong-site procedures (WSP). These occurrences are often due to multiple, simultaneous failures in team processes and communication. Despite being relatively rare, wrong-site surgery can be devastating to all parties involved, from patients and families to healthcare workers and hospitals. This chapter provides a general overview of the topic in the context of clinical vignettes discussing specific examples of WSP. The goal of this work is to educate the reader about risk factors and preventive strategies pertinent to WSP, with the hope of propagating the knowledge required to eliminate these "never events." To that end, the chapter discusses pitfalls in current surgical practice that may contribute to critical safety breakdowns and emphasizes the need for multiple overlapping measures designed to improve patient safety. Furthermore, updated definitions regarding WSP are included in order to better characterize the different types of WSP. Most importantly, this chapter presents evidence-based support for the current strategies to prevent wrong-site events. A summary of selected recent wrong-site occurrences is also provided as a reference for researchers in this important area of patient safety.
Intrahospital transport of patients constitutes an integral part of care delivery in the complex environment of modern hospitals. In general, the more complicated and acute the patient's condition is, the more likely he or she will require both scheduled and unscheduled trips. The purpose of this chapter is to highlight the potential adverse events associated with intrahospital transfers (IHTs), to discuss the interdepartmental handoff process when patients travel within the walls of a single institution, and finally to provide strategies to prevent adverse events from occurring during the IHT process. A comprehensive literature review, covering some of the most recent developments in this area, has been included in this manuscript. Aspects unique to this presentation include sections dedicated to risk assessment, commonly seen patterns of transfers and complications, as well as the inclusion of family communication as a core component of the process. The overall goal of providers and patient safety champions should be the achievement of "zero incidence" rate of IHTrelated events. We hope that this chapter provides a small, but significant, step in the right direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.