Abstract. We present the result of the third Marine Ice Sheet Model Intercomparison Project, MISMIP+. MISMIP+ is intended to be a benchmark for ice-flow models which include fast sliding marine ice streams and floating ice shelves and in particular a treatment of viscous stress that is sufficient to model buttressing, where upstream ice flow is restrained by a downstream ice shelf. A set of idealized experiments first tests that models are able to maintain a steady state with the grounding line located on a retrograde slope due to buttressing and then explore scenarios where a reduction in that buttressing causes ice stream acceleration, thinning, and grounding line retreat. The majority of participating models passed the first test and then produced similar responses to the loss of buttressing. We find that the most important distinction between models in this particular type of simulation is in the treatment of sliding at the bed, with other distinctions – notably the difference between the simpler and more complete treatments of englacial stress but also the differences between numerical methods – taking a secondary role.
ABSTRACT. Calving mechanisms are still poorly understood and stress states in the vicinity of ice-shelf fronts are insufficiently known for the development of physically motivated calving laws that match observations. A calving model requires the knowledge of maximum tensile stresses. These stresses depend on different simulation approaches and material models. Therefore, this study compares results of a two-dimensional (2-D) continuum approach using finite elements with results of a onedimensional (1-D) beam model elaborated in Reeh (1968). A purely viscous model, as well as a viscoelastic Maxwell model, is applied for the 2-D case. The maximum tensile stress usually appears at the top surface of an ice shelf. Its location and magnitude are predominantly influenced by the thickness of the ice shelf and the height of the freeboard, the traction-free part at the ice front. More precisely, doubling the thickness leads to twice the stress maximum, while doubling the freeboard, based on changes of the ice density, results in an increase of the stress maximum by 61%. Poisson's ratio controls the evolution of the maximum stress with time. The viscosity and Young's modulus define the characteristic time of the Maxwell model and thus the time to reach the maximum principal stress.
Future projections of global mean sea level change are uncertain, partly because of our limited understanding of the dynamics of Greenland’s outlet glaciers. Here we study Nioghalvfjerdsbræ, an outlet glacier of the Northeast Greenland Ice Stream that holds 1.1 m sea-level equivalent of ice. We use GPS observations and numerical modelling to investigate the role of tides as well as the elastic contribution to glacier flow. We find that ocean tides alter the basal lubrication of the glacier up to 10 km inland of the grounding line, and that their influence is best described by a viscoelastic rather than a viscous model. Further inland, sliding is the dominant mechanism of fast glacier motion, and the ice flow induces persistent elastic strain. We conclude that elastic deformation plays a role in glacier flow, particularly in areas of steep topographic changes and fast ice velocities.
To understand the dynamics of ice shelves, a knowledge of their internal and basal structure is very important. As the capacity to perform local surveys is limited, remote sensing provides an opportunity to obtain the relevant information. We must prove, however, that the relevant information can be obtained from remote sensing of the surface. That is the aim of this study. The Jelbart Ice Shelf, Antarctica, exhibits a variety of surface structures appearing as stripe-like features in radar imagery. We performed an airborne geophysical survey across these features and compared the results to TerraSAR-X imagery. We find that the stripe-like structures indicate surface troughs coinciding with the location of basal channels and crevasse-like features, revealed by radio-echo sounding. HH and VV polarizations do not show different magnitude. In surface troughs, the local accumulation rate is larger than at the flat surface. Viscoelastic modelling is used to gain an understanding of the surface undulations and their origin. The surface displacement, computed with a Maxwell model, matches the observed surface reasonably well. Our simulations show that the surface troughs develop over decadal to centennial timescales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.