This single-institution retrospective series of patients with gangliogliomas is unique given its large cohort size with a long follow-up duration, and confirms the excellent long-term survival rate in this group. The study also shows the importance of resection extent on likelihood of recurrence. Patients with gangliogliomas who undergo STR or biopsy alone have poor PFS. Radiation therapy may delay time to progression in patients with unresectable disease.
ImportanceCancer screening deficits during the first year of the COVID-19 pandemic were found to persist into 2021. Cancer-related deaths over the next decade are projected to increase if these deficits are not addressed.ObjectiveTo assess whether participation in a nationwide quality improvement (QI) collaborative, Return-to-Screening, was associated with restoration of cancer screening.Design, Setting, and ParticipantsAccredited cancer programs electively enrolled in this QI study. Project-specific targets were established on the basis of differences in mean monthly screening test volumes (MTVs) between representative prepandemic (September 2019 and January 2020) and pandemic (September 2020 and January 2021) periods to restore prepandemic volumes and achieve a minimum of 10% increase in MTV. Local QI teams implemented evidence-based screening interventions from June to November 2021 (intervention period), iteratively adjusting interventions according to their MTVs and target. Interrupted time series analyses was used to identify the intervention effect. Data analysis was performed from January to April 2022.ExposuresCollaborative QI support included provision of a Return-to-Screening plan-do-study-act protocol, evidence-based screening interventions, QI education, programmatic coordination, and calculation of screening deficits and targets.Main Outcomes and MeasuresThe primary outcome was the proportion of QI projects reaching target MTV and counterfactual differences in the aggregate number of screening tests across time periods.ResultsOf 859 cancer screening QI projects (452 for breast cancer, 134 for colorectal cancer, 244 for lung cancer, and 29 for cervical cancer) conducted by 786 accredited cancer programs, 676 projects (79%) reached their target MTV. There were no hospital characteristics associated with increased likelihood of reaching target MTV except for disease site (lung vs breast, odds ratio, 2.8; 95% CI, 1.7 to 4.7). During the preintervention period (April to May 2021), there was a decrease in the mean MTV (slope, −13.1 tests per month; 95% CI, −23.1 to −3.2 tests per month). Interventions were associated with a significant immediate (slope, 101.0 tests per month; 95% CI, 49.1 to 153.0 tests per month) and sustained (slope, 36.3 tests per month; 95% CI, 5.3 to 67.3 tests per month) increase in MTVs relative to the preintervention trends. Additional screening tests were performed during the intervention period compared with the prepandemic period (170 748 tests), the pandemic period (210 450 tests), and the preintervention period (722 427 tests).Conclusions and RelevanceIn this QI study, participation in a national Return-to-Screening collaborative with a multifaceted QI intervention was associated with improvements in cancer screening. Future collaborative QI endeavors leveraging accreditation infrastructure may help address other gaps in cancer care.
Reduction in setup errors is advocated through daily imaging and adaptive therapy, where the target volume is drawn daily. Previous studies suggest that inter-physician volume variation is significant (1.5 cm standard deviation [SD]); however, there are limited data for intra-physician consistency in daily target volume delineation, which is investigated in this study. Seven patients with lung cancer were chosen based on the perceived difficulty of contouring their disease, varying from simple parenchymal lung nodules to lesions with extensive adjacent atelectasis. Four physicians delineated the gross tumor volume (GTV) for each patient on 10 separate days to see the intra- and inter-physician contouring. Isocenter coordinates (x, y and z), target volume (cm3), and largest dimensions on anterior–posterior (AP) and lateral views were recorded for each GTV. Our results show that the variability among the physicians was reflected by target volumes ranging from +109% to −86% from the mean while isocenter coordinate changes were minimal; 3.8, 1.7 and 1.9 mm for x, y and z coordinates, respectively. The orthogonal image (AP and lateral) change varied 16.3 mm and 15.0 mm respectively among days and physicians. We conclude than when performing daily imaging, random variability in contouring resulted in isocenter changes up to ±3.8 mm in our study. The shape of the target varied within ±16 mm. This study suggests that when using daily imaging to track isocenter, target volume, or treatment parameters, physicians should be aware of personal variability when considering margins added to the target volume in daily decision making especially for difficult cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.