Mucosal-associated invariant T cells (MAIT cells) recognize bacterial metabolites as antigen and are found in blood and tissues, where they are poised to contribute to barrier immunity. Recent data demonstrate that MAIT cells located in mucosal barrier tissues are functionally distinct from their blood counterparts, but the relationship and circulation of MAIT cells between blood and different tissue compartments remains poorly understood. Previous studies raised the possibility that MAIT cells do not leave tissue and may either be retained or undergo apoptosis. To directly address if human MAIT cells exit tissues, we collected human donor-matched thoracic duct lymph and blood and analyzed MAIT cell phenotype, transcriptome, and T cell receptor (TCR) diversity by flow cytometry and RNA sequencing. We found that MAIT cells were present in the lymph, despite being largely CCR7- in the blood, thus indicating that MAIT cells in the lymph migrated from tissues and were capable of exiting tissues to recirculate. Importantly, MAIT cells in the lymph and blood had highly overlapping clonotype usage but distinct transcriptome signatures, indicative of differential activation states.
Summary Growing evidence indicates a role for the gut microbiota in modulating anti-tumor treatment efficacy in human cancer. Here we study mucosa-associated invariant T (MAIT) cells to look for evidence of bacterial antigen recognition in human colon, lung, and kidney carcinomas. Using mass cytometry and single-cell mRNA sequencing, we identify a tumor-infiltrating MAIT cell subset expressing CD4 and Foxp3 and observe high expression of CD39 on MAIT cells from colorectal cancer (CRC) only, which we show in vitro to be expressed specifically after TCR stimulation. We further reveal that these cells are phenotypically and functionally exhausted. Sequencing data show high bacterial infiltration in CRC tumors and highlight an enriched species, Fusobacteria nucleatum, with capability to activate MAIT cells in a TCR-dependent way. Our results provide evidence of a MAIT cell response to microbial antigens in CRC and could pave the way for manipulating MAIT cells or the microbiome for cancer therapy.
Drug-induced liver injury (DILI) is a major health issue, as it remains difficult to predict which new drugs will cause injury and who will be susceptible to this disease. This is due in part to the lack of animal models and knowledge of susceptibility factors that predispose individuals to DILI. In this regard, liver eosinophilia has often been associated with DILI, though its role remains unclear. We decided to investigate this problem in a murine model of halothane-induced liver injury (HILI). When female Balb/cJ mice were administered halothane, eosinophils were detected by flow cytometry in the liver within 12 hours and increased thereafter proportionally to liver damage. Chemokines, CCL11 and CCL24, which are known to attract eosinophils, increased in response to halothane-treatment. The severity of HILI was decreased significantly when the study was repeated in wild-type mice made deficient in eosinophils with a depleting antibody and in eosinophil lineage-ablated ΔdblGata−/− mice. Moreover, depletion of neutrophils by pretreating animals with Gr-1 antibody prior to halothane administration failed to reduce the severity of HILI at antibody concentrations that did not affect hepatic eosinophils. Immunohistochemical staining for the granule protein, major basic protein, revealed that eosinophils accumulated exclusively around areas of hepatocellular necrosis. Conclusion: Our findings indicate that eosinophils have a pathologic role in HILI in mice and suggest that they may contribute similarly in many clinical cases of DILI.
CCR5 is thought to play a central role in orchestrating migration of cells in response to inflammation. CCR5 antagonists can reduce inflammatory disease processes, which has led to an increased interest in using CCR5 antagonists in a wide range of inflammation-driven diseases. Paradoxically, these antagonists appear to function without negatively affecting host immunity at barrier sites. We reasoned that the resolution to this paradox may lie in the CCR5+ T cell populations that permanently reside in tissues. We used a single-cell analysis approach to examine the human CCR5+ T cell compartment in the blood, healthy, and inflamed mucosal tissues to resolve these seemingly contradictory observations. We found that 65% of the CD4 tissue-resident memory T (TRM) cell compartment expressed CCR5. These CCR5+ TRM cells were enriched in and near the epithelial layer and not only limited to TH1-type cells but also contained a large TH17-producing and a stable regulatory T cell population. The CCR5+ TRM compartment was stably maintained even in inflamed tissues including the preservation of TH17 and regulatory T cell populations. Further, using tissues from the CHARM-03 clinical trial, we found that CCR5+ TRM are preserved in human mucosal tissue during treatment with the CCR5 antagonist Maraviroc. Our data suggest that the human CCR5+ TRM compartment is functionally and spatially equipped to maintain barrier immunity even in the absence of CCR5-mediated, de novo T cell recruitment from the periphery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.