Various forms of immunotherapy, such as checkpoint blockade immunotherapy, are proving to be effective at restoring T cell-mediated immune responses that can lead to marked and sustained clinical responses, but only in some patients and cancer types. Patients and tumours may respond unpredictably to immunotherapy partly owing to heterogeneity of the immune composition and phenotypic profiles of tumour-infiltrating lymphocytes (TILs) within individual tumours and between patients. Although there is evidence that tumour-mutation-derived neoantigen-specific T cells play a role in tumour control, in most cases the antigen specificities of phenotypically diverse tumour-infiltrating T cells are largely unknown. Here we show that human lung and colorectal cancer CD8 TILs can not only be specific for tumour antigens (for example, neoantigens), but also recognize a wide range of epitopes unrelated to cancer (such as those from Epstein-Barr virus, human cytomegalovirus or influenza virus). We found that these bystander CD8 TILs have diverse phenotypes that overlap with tumour-specific cells, but lack CD39 expression. In colorectal and lung tumours, the absence of CD39 in CD8 TILs defines populations that lack hallmarks of chronic antigen stimulation at the tumour site, supporting their classification as bystanders. Expression of CD39 varied markedly between patients, with some patients having predominantly CD39 CD8 TILs. Furthermore, frequencies of CD39 expression among CD8 TILs correlated with several important clinical parameters, such as the mutation status of lung tumour epidermal growth factor receptors. Our results demonstrate that not all tumour-infiltrating T cells are specific for tumour antigens, and suggest that measuring CD39 expression could be a straightforward way to quantify or isolate bystander T cells.
Type 1 diabetes develops over many years and is characterized ultimately by the destruction of insulin-producing pancreatic beta cells by autoreactive T cells. Nonetheless, the role of innate cells in the initiation of this disease remains poorly understood. Here, we show that in young female nonobese diabetic mice, physiological beta cell death induces the recruitment and activation of B-1a cells, neutrophils and plasmacytoid dendritic cells (pDCs) to the pancreas. Activated B-1a cells secrete IgGs specific for double-stranded DNA. IgGs activate neutrophils to release DNA-binding cathelicidin-related antimicrobial peptide (CRAMP), which binds self DNA. Then, self DNA, DNA-specific IgG and CRAMP peptide activate pDCs through the Toll-like receptor 9-myeloid differentiation factor 88 pathway, leading to interferon-α production in pancreatic islets. We further demonstrate through the use of depleting treatments that B-1a cells, neutrophils and IFN-α-producing pDCs are required for the initiation of the diabetogenic T cell response and type 1 diabetes development. These findings reveal that an innate immune cell crosstalk takes place in the pancreas of young NOD mice and leads to the initiation of T1D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.