The intracellular compartment harboring Toxoplasma gondii satisfies the parasite's nutritional needs for rapid growth in mammalian cells. We demonstrate that the parasitophorous vacuole (PV) of T. gondii accumulates material coming from the host mammalian cell via the exploitation of the host endo-lysosomal system. The parasite actively recruits host microtubules, resulting in selective attraction of endo-lysosomes to the PV. Microtubule-based invaginations of the PV membrane serve as conduits for the delivery of host endo-lysosomes within the PV. These tubular conduits are decorated by a parasite coat, including the tubulogenic protein GRA7, which acts like a garrote that sequesters host endocytic organelles in the vacuolar space. These data define an unanticipated process allowing the parasite intimate and concentrated access to a diverse range of low molecular weight components produced by the endo-lysosomal system. More generally, they identify a unique mechanism for unidirectional transport and sequestration of host organelles.
Prenylcysteine carboxyl methyltransferase (pcCMT) is the third of three enzymes that posttranslationally modify C-terminal CAAX motifs and thereby target CAAX proteins to the plasma membrane. Here we report the molecular characterization and subcellular localization of the first mammalian (human myeloid) pcCMT. The deduced amino acid sequence of mammalian pc-CMT predicts a multiple membrane-spanning protein with homologies to the yeast pcCMT, STE14, and the mammalian band 3 anion transporter. The human gene complemented a ste14 mutant. pcCMT mRNAs were ubiquitously expressed in human tissues. An anti-pc-CMT antiserum detected a 33-kDa protein in myeloid cell membranes. Ectopically expressed recombinant pc-CMT had enzymatic activity identical to that observed in neutrophil membranes. Mammalian pcCMT was not expressed at the plasma membrane but rather restricted to the endoplasmic reticulum. Thus, the final enzyme in the sequence that modifies CAAX motifs is located in membranes topologically removed from the CAAX protein target membrane.A number of signaling molecules, including Ras and G proteins, are targeted to the inner leaflet of the plasma membrane by a sequence of posttranslational modifications of a C-terminal CAAX 1 motif that include prenylation, proteolysis, and carboxyl methylation (1). In some cases palmitoylation of an upstream cysteine is also required (2). These modifications render otherwise hydrophilic proteins hydrophobic, promoting association with membranes. The relative contributions of prenylation, proteolysis, and carboxyl methylation to membrane targeting are not well understood. Whereas neutralization of the negative charge on the ␣-carboxyl group by methyl esterification adds to overall hydrophobicity, particularly for farnesylated proteins, this modification contributes little to the affinity of geranylgeranylated proteins for membranes (3). Although processed CAAX proteins can associate with phospholipid vesicles in vitro (4), it is not known whether membrane proteins participate in prenylcysteine membrane association in vivo. The Saccharomyces cerevisiae mating pheromone, a-factor, is a CAAX-processed polypeptide, and both its secretion via the Ste6p transporter (5) and its engagement of the Ste3p G protein-linked receptor (6) are dependent on prenylcysteine carboxyl methylation, suggesting a role for this modification in protein-protein interactions. A cycle of prenylcysteine carboxyl methylation is associated with neutrophil activation (7), and inhibitors of this enzyme block signal transduction in neutrophils (7), macrophages (8), and platelets (9), suggesting that, like bacterial chemotaxis (10), some eukaryotic processes may be regulated by reversible carboxyl methylation.Because prenylcysteine carboxyl methylation cannot be abolished by mutation of the substrate without also eliminating prenylation, elucidation of the role of carboxyl methylation will require characterization and disruption of the methyltransferase. Until recently, the only prenylcysteine carboxyl methyltransfe...
Toxoplasma is an obligate intracellular parasite that replicates in mammalian cells within a parasitophorous vacuole (PV) that does not fuse with any host organelles. One mechanism developed by the parasite for nutrient acquisition is the attraction of host organelles to the PV. Here, we examined the exploitation of host lipid droplets (LD), ubiquitous fat storage organelles, by Toxoplasma. We show that Toxoplasma replication is reduced in host cells that are depleted of LD, or impaired in TAG lipolysis or fatty acid catabolism. In infected cells, the number of host LD and the expression of host LD-associated genes (ADRP, DGAT2), progressively increase until the onset of parasite replication. Throughout infection, the PV are surrounded by host LD. Toxoplasma is capable of accessing lipids stored in host LD and incorporates these lipids into its own membranes and LD. Exogenous addition of oleic acid stimulates LD biogenesis in the host cell and results in the overaccumulation of neutral lipids in very large LD inside the parasite. To access LD-derived lipids, Toxoplasma intercepts and internalizes within the PV host LD, some of which remaining associated with Rab7, which become wrapped by an intravacuolar network of membranes (IVN). Mutant parasites impaired in IVN formation display diminished capacity of lipid uptake from host LD. Moreover, parasites lacking an IVN-localized phospholipase A2 are less proficient in salvaging lipids from host LD in the PV, suggesting a major contribution of the IVN for host LD processing in the PV and, thus lipid content release. Interestingly, gavage of parasites with lipids unveils, for the first time, the presence in Toxoplasma of endocytic-like structures containing lipidic material originating from the PV lumen. This study highlights the reliance of Toxoplasma on host LD for its intracellular development and the parasite’s capability in scavenging neutral lipids from host LD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.