Fig. 1. 3D NACA wing example of vorticity before (left of the dashed line) and after (right) the application of our proposed approach.Abstract-As the finite element method (FEM) and the finite volume method (FVM), both traditional and high-order variants, continue their proliferation into various applied engineering disciplines, it is important that the visualization techniques and corresponding data analysis tools that act on the results produced by these methods faithfully represent the underlying data. To state this in another way: the interpretation of data generated by simulation needs to be consistent with the numerical schemes that underpin the specific solver technology. As the verifiable visualization literature has demonstrated: visual artifacts produced by the introduction of either explicit or implicit data transformations, such as data resampling, can sometimes distort or even obfuscate key scientific features in the data. In this paper, we focus on the handling of elemental continuity, which is often only C 0 continuous or piecewise discontinuous, when visualizing primary or derived fields from FEM or FVM simulations. We demonstrate that traditional data handling and visualization of these fields introduce visual errors. In addition, we show how the use of the recently proposed line-SIAC filter provides a way of handling elemental continuity issues in an accuracy-conserving manner with the added benefit of casting the data in a smooth context even if the representation is element discontinuous.
Over the past few decades there has been a strong effort towards the development of Smoothness-Increasing Accuracy-Conserving (SIAC) filters [21] for Discontinuous Galerkin (DG) methods, designed to increase the smoothness and improve the convergence rate of the DG solution through this post-processor. These advantages can be exploited during flow visualization, for example by applying the SIAC filter to the DG data before streamline computations [Steffan et al., IEEE-TVCG 14(3): 680-692]. However, introducing these filters in engineering applications can be challenging since a tensor product filter grows in support size as the field dimension increases, becoming computationally expensive. As an alternative, [Walfisch et al., JOMP 38(2);164-184] proposed a univariate filter implemented along the streamline curves. Until now, this technique remained a numerical experiment. In this paper we introduce the SIAC line filter and explore how the orientation, structure and filter size affect the order of accuracy and global errors. We present theoretical error estimates showing how line filtering preserves the properties of traditional tensor product filtering, including smoothness and improvement in the convergence rate. Furthermore, numerical experiments are included, exhibiting how these filters achieve the same accuracy at significantly lower computational costs, becoming an attractive tool for the scientific visualization community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.