For aims and scope, manuscript preparation and submission instruc tions, subscription and all other information, see the inside back cover and visit: http://wileyonlinelibrary.com/journal/ddi
Vessel strikes are a major threat impacting large whales globally. Juvenile whales often represent a high proportion of lethal vessel strikes, but few studies have investigated whether juvenile whales show different behaviors that might influence their risk of vessel strike. We evaluated how variability in habitat use and foraging behavior by age class influences the risk of vessel strike for humpback whales Megaptera novaeangliae in the New York Bight (NYB), a highly urbanized region with frequent vessel strikes. We used data from unmanned aerial vehicle (UAV) surveys to compare the habitat use and foraging behavior of adult and juvenile humpback whales and compared length measurements of foraging individuals with those confirmed to have been killed by vessel strikes. Further, using Automatic Information System data, we analyzed the speed and density of vessel traffic relative to humpback whale habitat use. The vast majority (93%) of humpback whales confirmed to have been struck by vessels in the NYB were juveniles. Whales foraging in nearshore waters were exclusively juveniles that were surface feeding, while both juveniles and adults foraged cooperatively in offshore waters. Passenger vessel density and speed were highest in nearshore waters. The habitat use and surface foraging behavior of juvenile humpback whales may make them particularly vulnerable to vessel strikes in nearshore waters, and passenger vessels in these waters may be a risk factor. This work highlights the importance of understanding age-specific differences in habitat use to better understand and mitigate the risk of anthropogenic threats to large whales.
Humpback whales (Megaptera novaeangliae) exhibit maternally driven fidelity to feeding grounds, and yet occasionally occupy new areas. Humpback whale sightings and mortalities in the New York Bight apex (NYBA) have been increasing over the last decade, providing an opportunity to study this phenomenon in an urban habitat. Whales in this area overlap with human activities, including busy shipping traffic leading into the Port of New York and New Jersey. The site fidelity, population composition and demographics of individual whales were analysed to better inform management in this high-risk area. Whale watching and other opportunistic data collections were used to identify 101 individual humpback whales in the NYBA from spring through autumn, 2012–2018. Although mean occurrence was low (2.5 days), mean occupancy was 37.6 days, and 31.3% of whales returned from one year to the next. Individuals compared with other regional and ocean-basin-wide photo-identification catalogues (N = 52) were primarily resighted at other sites along the US East Coast, including the Gulf of Maine feeding ground. Sightings of mother-calf pairs were rare in the NYBA, suggesting that maternally directed fidelity may not be responsible for the presence of young whales in this area. Other factors including shifts in prey species distribution or changes in population structure more broadly should be investigated.
Understanding the at-sea movements of wide-ranging seabird species throughout their annual cycle is essential for their conservation and management. Habitat use and resource partitioning of Laysan (Phoebastria immutabilis) and black-footed (Phoebastria nigripes) albatross are well-described during the breeding period but are less understood during the post-breeding period, which represents ~40% of their annual cycle. Resource partitioning may be reduced during post-breeding, when birds are not constrained to return to the nest site regularly and can disperse to reduce competitive pressure. We assessed the degree of spatial segregation in the post-breeding distributions of Laysan (n = 82) and black-footed albatrosses (n = 61) using geolocator tags between 2008 and 2012 from two large breeding colonies in the Northwestern Hawaiian Islands, Midway Atoll, and Tern Island. We characterized the species-and colony-specific foraging and focal distributions (represented by the 95 and 50th density contours, respectively) and quantified segregation in at-sea habitat use between species and colonies. Laysan and black-footed albatross showed consistent and significant at-sea segregation in focal areas across colonies, indicating that resource partitioning persists during post-breeding. Within breeding colonies, segregation of foraging areas between the two species was more evident for birds breeding at Tern Island. Spatial segregation decreased as the post-breeding season progressed, when spatial distributions of both species became more dispersed. In contrast to studies conducted on breeding Laysan and black-footed albatross, we found that sea surface temperature distinguished post-breeding habitats of black-footed albatrosses between colonies, with black-footed albatrosses from Midway Atoll occurring in cooler waters (3.6°C cooler on average). Our results reveal marked at-sea segregation between Laysan and black-footed albatross breeding at two colonies during a critical but understudied phase in their annual cycle. The observed variation in species-environment relationships underscores the importance of sampling multiple colonies and temporal periods to more thoroughly understand the spatial distributions of pelagic seabirds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.