Pyrolysis of contaminated soils at 420 °C converted recalcitrant heavy hydrocarbons into "char" (a carbonaceous material similar to petroleum coke) and enhanced soil fertility. Pyrolytic treatment reduced total petroleum hydrocarbons (TPH) to below regulatory standards (typically <1% by weight) within 3 h using only 40-60% of the energy required for incineration at 600-1200 °C. Formation of polycyclic aromatic hydrocarbons (PAHs) was not observed, with post-pyrolysis levels well below applicable standards. Plant growth studies showed a higher biomass production of Arabidopsis thaliana and Lactuca sativa (Simpson black-seeded lettuce) (80-900% heavier) in pyrolyzed soils than in contaminated or incinerated soils. Elemental analysis showed that pyrolyzed soils contained more carbon than incinerated soils (1.4-3.2% versus 0.3-0.4%). The stark color differences between pyrolyzed and incinerated soils suggest that the carbonaceous material produced via pyrolysis was dispersed in the form of a layer coating the soil particles. Overall, these results suggest that soil pyrolysis could be a viable thermal treatment to quickly remediate soils impacted by weathered oil while improving soil fertility, potentially enhancing revegetation.
Pyrolysis of hydrocarbon-contaminated soils offers the potential for rapid remediation without destroying soil fertility. Here we elucidate the fundamental mechanisms of pyrolytic treatment and advance understanding of the surface properties of pyrolyzed soils. Using thermogravimetry and evolved gas analysis, we identified the two stages of pyrolytic remediation. Desorption of light hydrocarbons is the dominant process for temperatures between 150 and 350 °C. Pyrolysis reactions dominate in the 400−500 °C range releasing gaseous products (hydrogen, methane, higher alkanes, and olefins) and forming a solid char. XPS analysis and partial combustion revealed that the char forms a layer coating the particles of treated soils. Since pyrolysis can effectively reduce the TPH of contaminated soils at temperatures below 500 °C, it avoids carbonate decomposition reactions that may lead to large soil pH increases and severe loss of fertility. This is a significant potential advantage over competing thermal processes that expose contaminated soil to temperatures above 500 °C.
Pyrolytic treatment offers the potential for the rapid remediation of contaminated soils. However, soil fertility restoration can be highly variable, underscoring the need to understand how treatment conditions affect soil detoxification and the ability to support plant growth. We report here the first pilot-scale study of pyrolytic remediation of crude-oil-contaminated soil using a continuously fed rotary kiln reactor. Treatment at 420 °C with only 15 min of residence time resulted in high removal efficiencies for both total petroleum hydrocarbons (TPH) (99.9%) and polycyclic aromatic hydrocarbons (PAHs) (94.5%) and restored fertility to clean soil levels (i.e., Lactuca sativa biomass dry weight yield after 21 days increased from 3.0 ± 0.3 mg for contaminated soil to 8.8 ± 1.1 mg for treated soil, which is similar to 9.0 ± 0.7 mg for uncontaminated soil). Viability assays with a human bronchial epithelial cell line showed that pyrolytic treatment effectively achieved detoxification of contaminated soil extracts. As expected, TPH and PAH removal efficiencies increased with increasing treatment intensity (i.e., higher temperatures and longer residence times). However, higher treatment intensities decreased soil fertility, suggesting that there is an optimal systemspecific intensity for fertility restoration. Overall, this study highlights trade-offs between pyrolytic treatment intensity, hydrocarbon removal efficiency, and fertility restoration while informing the design, optimization, and operation of large-scale pyrolytic systems to efficiently remediate crude-oil-contaminated soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.