IntroductionVolumetric parameters acquired by transpulmonary thermodilution had been repeatedly proven superior to filling pressures for estimation of cardiac preload. Up to now, the proposed normal ranges were never studied in detail. We investigated the relationship of the global end-diastolic volume (GEDV) acquired by transpulmonary thermodilution with age and gender in awake and spontaneously breathing patients.MethodsPatients requiring brain tumor surgery were equipped prospectively with a transpulmonary thermodilution device. On postoperative day one, thermodilution measurements were performed in 101 patients ready for discharge from the ICU. All subjects were awake, spontaneously breathing, hemodynamically stable and free of catecholamines.ResultsMain finding was a dependence of GEDV on age and gender, height and weight of the patient. Age was a highly significant non-linear coefficient for GEDV with large inter-individual variance (p < 0.001). On average, GEDV was 131.1 ml higher in males (p = 0.027). Each cm body height accounted for 13.0 ml additional GEDV (p < 0.001). GEDV increased by 2.90 ml per kg actual body weight (p = 0.043). Each cofactor, including height and weight, remained significant after indexing GEDV to body surface area using predicted body weight.ConclusionsThe volumetric parameter GEDV shows a large inter-individual variance and is dependent on age and gender. These dependencies persist after indexing GEDV to body surface area calculated with predicted body weight. Targeting resuscitation using fixed ranges of preload volumes acquired by transpulmonary thermodilution without concern to an individual patient's age and gender seems not to be appropriate.
Selective continuous intraarterial nimodipine treatment for refractory cerebral vasospasm after aSAH seems feasible and may add to the endovascular therapeutic options. Appropriate monitoring technology is essential for further investigation of this novel technique.
Using either predicted or actual body weight for indexing extravascular lung water does not lead to independence of height, weight, and gender of the patient. Specifying a fixed range of normal or a uniform upper threshold for all patients is misleading for either method, despite widespread use. Our data suggest that indexing extravascular lung water to height is superior to weight-based methods. As we are not aware of any abnormal hemodynamic profile for brain tumor patients, we propose our findings to be a close approximation to normal values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.