tissue-derived decellularized biomaterials are ideal for tissue engineering applications as they mimic the biochemical composition of the native tissue. these materials can be used as hydrogels for cell encapsulation and delivery. the decellularization process can alter the composition of the extracellular matrix (ECM) and thus influence the hydrogels characteristics. The aim of this study was to examine the impact of decellularization protocols in ecM-derived hydrogels obtained from porcine corneas. Porcine corneas were isolated and decellularized with SDS, Triton X-100 or by freeze-thaw cycles. All decellularization methods decreased DNA significantly when measured by PicoGreen and visually assessed by the absence of cell nuclei. Collagen and other ECM components were highly retained, as quantified by hydroxyproline content and sGAG, by histological analysis and by SDS-PAGE. Hydrogels obtained by freeze-thaw decellularization were the most transparent. The method of decellularization impacted gelation kinetics assessed by turbidimetric analysis. All hydrogels showed a fibrillary and porous structure determined by cryoSEM. Human corneal stromal cells were embedded in the hydrogels to assess cytotoxicity. SDS decellularization rendered cytotoxic hydrogels, while the other decellularization methods produced highly cytocompatible hydrogels. Freeze-thaw decellularization produced hydrogels with the overall best properties.The extracellular matrix (ECM) is primarily composed of structural and regulatory proteins and polysaccharides and is generated and maintained by cells. Many cellular functions, such as proliferation, migration or differentiation are regulated by the ECM 1 . Each organ and tissue is composed of a distinctive ECM, in its biochemical composition and structural organization. The properties of ECM are important in the fields of tissue engineering and regenerative medicine, which often aim to replicate the composition and structure of the ECM. By using synthetic or natural materials, three-dimensional scaffolds can be fabricated to repair or restore damaged organs and tissues.One popular approach to generating scaffolds that try to imitate the tissues or organs ECM characteristics is to use decellularization. This technique involves the removal of cellular components from a tissue so that only the ECM remains. Many methods have been examined for performing decellularization and these can be divided into three main categories: physical, chemical and biological 2 . Physical methods include freeze-thawing cycles 3-6 , high hydrostatic pressure 7-9 or supercritical CO 2 10-12 . Chemical agents can involve ionic detergents, such as sodium dodecyl sulphate (SDS) 13,14 or sodium deoxycholate 15 ; non-ionic detergents, such as Triton X-100 16 ; hypertonic or hypotonic salt solutions, such as sodium chloride 17,18 ; and acids and bases, such as peracetic acid 19 or ammonium hydroxide 20 . Enzymes such as trypsin, dispase and phospholipase A2 have been used as biological methods for decellularization 21,22 . Furt...
Corneal blindness is one of the most common causes of vision loss worldwide, affecting millions of people. To treat these patients, researchers have been examining different approaches to engineer corneal scaffolds suitable for transplantation. Scaffolds have been developed to replace part or all of the cornea depending on the patient requirements. Both acellular and cell-seeded scaffolds have been tested in animal models. Materials that have been under investigation for manufacturing scaffolds include collagen, silk fibroin, amniotic membrane, decellularized cornea, fibrin, chitosan, gelatin, agarose, alginate, and hyaluronic acid in addition to several synthetic polymers. Different combinations of materials, fiber crosslinking techniques, and incorporation of bioactive molecules have also been examined. Factors such as the physical properties, cytocompatibility, degradation behavior, and optical characteristics have to be considered when selecting a suitable scaffold material. Recent advancements in materials fabrication techniques such as bioprinting, electrospinning, and different collagen alignment techniques, allow scaffolds to be generated that more accurately mimic the structure of the corneal stroma. A number of scaffolds have commenced clinical trials to determine their suitability for corneal regeneration.
The global shortage of donor corneas for transplantation has led to corneal bioengineering being investigated as a method to generate transplantable tissues. Decellularized corneas are among the most promising materials for engineering corneal tissue since they replicate the complex structure and composition of real corneas. Decellularization is a process that aims to remove cells from organs or tissues resulting in a cell-free scaffold consisting of the tissues extracellular matrix. Here different decellularization techniques are described, including physical, chemical and biological methods. Analytical techniques to confirm decellularization efficiency are also discussed. Different cell sources for the recellularization of the three layers of the cornea, recellularization methods used in the literature and techniques used to assess the outcome of the implantation of such scaffolds are examined. Studies involving the application of decellularized corneas in animal models and human clinical studies are discussed. Finally, challenges for this technology are explored involving scalability, automatization and regulatory affairs.
Rational design of hydrogels that balance processability and extracellular matrix (ECM) biomimicry remains a challenge for tissue engineering and biofabrication. Hydrogels suitable for biofabrication techniques, yet tuneable to match the mechanical (static and dynamic) properties of native tissues remain elusive. Dynamic covalent hydrogels possessing shear-thinning/self-healing (processability) and time-dependent cross-links (mechanical properties) provide a potential solution, yet can be difficult to rationally control. Here, the straightforward modular mixing of dynamic cross-links with different timescales (hydrazone and oxime) is explored using rheology, self-healing tests, extrusion printing, and culture of primary human dermal fibroblasts. Maintaining a constant polymer content and cross-linker concentration, the stiffness and stress relaxation can be tuned across two orders of magnitude. All formulations demonstrate a similar flow profile after network rupture, allowing the separation of initial mechanical properties from flow behavior during printing. Furthermore, the self-healing nature of hydrogels with high hydrazone content enables recyclability of printed structures. Last, a distinct threshold for cell spreading and morphology is observed within this hydrogel series, even in multi-material constructs. Simple cross-linker mixing enables fine control and is of general interest for bioink development, targeting viscoelastic properties of specific cellular niches, and as an accessible and flexible platform for designing dynamic networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.