APAF1 is an autosomal recessive inherited mutation, associated with Holstein haplotype 1 (HH1) and characterized by a substitution of cytosine for a thymine (c.1741C>T) in chromosome 5. The mutation causes fetal and embryonic loss, between 60 and 200 days of gestation, and reduced conception rate. The ARMS-PCR is considered a simple and low-cost method to determine single nucleotide polymorphism (SNP) with no need for genetic sequencing of the animal genome. This study aimed to verify the allelic frequency of APAF1 mutation in Brazilian Holstein cattle. A total of 248 Holstein DNA samples (210 cows and 38 bulls) were analyzed, and synthetic genes were manufactured to validate the primers developed by the authors. All animals assessed in this study were classified as wild-type for APAF1 mutation. The primers and protocol developed for the ARMS-PCR technique work with 100% specificity and efficiency since the amplicon formations are as expected according to the genotypes. In conclusion, the mutation responsible for APAF1 was not detected in the Brazilian Holstein cattle population assessed in this prevalence study, although it is not possible to affirm that APAF1 does not occur in Brazilian Holstein animals. The tetra-primer ARMS-PCR protocol for APAF1 mutation that has been validated here may be a relatively simple and economical method to determine the animals' genotype.
Simple SummaryHereditary bleeding disorders occur in different species due to mutations in genes coding specific hemostatic proteins leading to alterations in their synthesis, or to the production of non-functional proteins which leads to impairment of hemostasis. Some of these disorders have been described in horses, i.e., Von Willebrand disease (VWD), hemophilia A, and Glanzmann’s thrombasthenia (GT). GT is an inherited disease characterized by hemorrhage and has been described in different species including horses of varied breeds (Thoroughbred, Standardbred, Oldenburg, Peruvian Paso, and Quarter Horse). There are two different mutations described in horses a single guanine to cytosine substitution (CGG for CCG) and a 10 base pair deletion in the ITGA2B gene.AbstractGlanzmann’s thrombasthenia (GT) is an autosomal recessive inherited disorder characterized by changes in platelet aggregation, leading to hemorrhage and epistaxis. To date, two independent mutations have been described in horses and associated with this disorder, a point mutation (c.122G > C) and a 10-base-pair deletion (g.1456_1466del) in the Integrin subunit alpha2β gene (ITGA2B) of horses of different breeds (Quarter Horse, Thoroughbred, Oldenburg, and Peruvian Paso). ITGA2B codifies the αIIb subunit of the αIIbβ3 integrin, also termed platelet fibrinogen receptor. Horses with GT have been diagnosed in the USA, Canada, Japan, and Australia. However, there are no studies on the prevalence of GT in horses. The aim of this study is to evaluate the prevalence of the mutations responsible for GT in horses in Brazil. A total of 1053 DNA samples of clinically healthy Quarter Horse (n = 679) and Warmblood horses (n = 374) were used. DNA fragments were amplified by PCR and sequenced. The genotype of each animal was analyzed and compared to the nucleotide sequence of the ITGA2B gene found on GenBankTM. There were no carriers in the analyzed samples, that is, all animals tested were wild type. Therefore, under the conditions in which this study was carried out, it can be inferred that GT seems to be extremely rare in the population of Quarter Horses and Warmbloods in Brazil, although it is not possible to affirm that there are no horses carrying mutated alleles in Brazil.
Progressive retinal atrophy (PRA) is a term used in veterinary medicine to describe inherited and progressive retinal diseases characterized by progressive retinal degeneration and loss of vision. In the Golden Retriever (GR) breed, the mutations associated with PRA have an autosomal recessive inheritance pattern. This study aimed to verify the allele frequencies of PRA1, PRA2, and PRA-prcd in the GR breed in Brazil. A total of 121 GR DNA samples (n = 66 females and n = 55 males) were analyzed. All animals assessed in this study were identified as wild-type (121/121 animals; 100%) for PRA1 and PRA2 mutations; therefore, no carrier or homozygous animals were identified in this population. For the PRA-prcd mutation, 118 animals (118/121 animals; 97.52%) were wild-type. Three animals were genotyped as heterozygous for PRA-prcd (3/121 animals; 2.47%), demonstrating that this mutation is still present in some bloodlines and animals in Brazil, even with a rare prevalence. Five animals (5/121 animals, 4.2%) had a previous eye disease, which was diagnosed by a veterinarian as entropion (2 animals), keratoconjunctivitis sicca (1 animal), corneal ulcer (1 animal), and bilateral blindness (1 animal). This dog with bilateral blindness was identified as wild type homozygous for three mutations assessed in this study; therefore, blindness was not associated with the investigated mutations. In addition, the vast majority (98.3%) of Brazilian breeders assessed in this study were unaware of these mutations as a cause of blindness in the Golden Retriever. Therefore, the present study will serve to disseminate knowledge about PRA and its genetic etiologies, as well as to support future studies with other Brazilian GR populations.
The Ehlers-Danlos syndrome (EDS) consists of a group of diseases characterized by defective collagen production or failure in its organization, resulting in changes in the strength and extensibility of connective tissue. This report describes the dermatological and histological findings observed in a 3-month-old crossbreed cat with rupture and detachment of skin in the thoracic limb and rupture of the skin in the cervical region. Upon dermatological examination, the cat presented fragile and hyperextensible skin in the cervical region and a skin extensibility index of 21%. Histopathological evaluation of the skin specimens revealed evident disorganization of collagen bundles in dermis and in the Masson’s trichrome staining, follicular dysplasia was found. The presumptive diagnosis of EDS was made based on the clinical and histopathological findings. Sanger sequencing did not detect any mutated alleles for the c.3420delG mutation in COL5A1 gene, which was an autosomal dominant mutation previously been associated with Ehlers-Danlos syndrome in cats. The absence of this mutation in the reported cat suggests that other mutation may also be responsible for the development of cutaneous asthenia in this or maybe other genes related to collagen metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.