Processes like cellular senescence are characterized by complex events giving rise to heterogeneous cell populations. However, the early molecular events driving this cascade remain elusive. We hypothesized that senescence entry is triggered by an early disruption of the cells' three-dimensional (3D) genome organization. To test this, we combined Hi-C, single-cell and population transcriptomics, imaging, and in silico modeling of three distinct cells types entering senescence. Genes involved in DNA conformation maintenance are suppressed upon senescence entry across all cell types. We show that nuclear depletion of the abundant HMGB2 protein occurs early on the path to senescence and coincides with the dramatic spatial clustering of CTCF. Knocking down HMGB2 suffices for senescence-induced CTCF clustering and for loop reshuffling, while ectopically expressing HMGB2 rescues these effects. Our data suggest that HMGB2-mediated genomic reorganization constitutes a primer for the ensuing senescent program.
The 2007 European larch (Larix decidua Mill.) growing season was monitored along two elevational transects in the Lötschental valley in the Swiss Alps. Phenological observations and weekly microcore sampling of 28 larch trees were conducted between April and October 2007 at seven study sites regularly spaced from 1350 to 2150 m a.s.l. on northwest- and southeast-facing slopes. The developmental stages of nearly 75,000 individual cells assessed on 1200 thin sections were used to investigate the links between the trees' thermal regimes and growth phases including the beginning and ending of cell enlargement, wall thickening and maturation of the stem wood. Needles appeared approximately 3-4 weeks earlier than stem growth. The duration of ring formation lasted from mid-May to the end of October, with the length of the growing season decreasing along elevation from 137 to 101 days. The onset of the different growing seasons changed by 3-4 days per 100 m elevation; the ending of the growing season, however, appeared minimally related to altitude. If associated with the monitored altitudinal lapse rate of -0.5 degrees C per 100 m, these results translate into a lengthening of the growing season by approximately 7 days per degree Celsius. This study provides new data on the timing and duration of basic growth processes and contributes to quantification of the impacts of global warming on tree growth and productivity.
We recently reported the detection of methanol emissions from leaves (R. MacDonald, R. Fall 119931 Atmos Environ 27A: 1709-171 3). This could represent a substantial flux of methanol to the atmosphere. Leaf methanol production and emission have not been investigated in detail, in part because of difficulties in sampling and analyzing methanol. In this study we used an enzymatic method to convert methanol to a fluorescent product and verified that leaves from severa1 species emit methanol. Methanol was emitted almost exclusively from the abaxial surfaces of hypostomatous leaves but from both surfaces of amphistomatous leaves, suggesting that methano1 exits leaves via stomates. The role of stomatal conductance was verified in experiments in which stomates were induced to close, resulting in reduced methanol. Free methanol was detected in bean leaf extracts, ranging from 26.8 pg g-' fresh weight in young leaves to 10.0 pg g-' fresh weight in older leaves. Methanol emission was related to leaf development, generally declining with increasing leaf age after leaf expansion; this is consistent with volatilization from a cellular pool that declines in older leaves. It is possible that leaf emission could be a major source of methanol found in the atmosphere of forests.
There is a growing perception that long non-coding RNAs (lncRNAs) modulate cellular function. In this study, we analyzed the role of the lncRNA HOTAIR in mesenchymal stem cells (MSCs) with particular focus on senescence-associated changes in gene expression and DNA-methylation (DNAm). HOTAIR binding sites were enriched at genomic regions that become hypermethylated with increasing cell culture passage. Overexpression and knockdown of HOTAIR inhibited or stimulated adipogenic differentiation of MSCs, respectively. Modification of HOTAIR expression evoked only very moderate effects on gene expression, particularly of polycomb group target genes. Furthermore, overexpression and knockdown of HOTAIR resulted in DNAm changes at HOTAIR binding sites. Five potential triple helix forming domains were predicted within the HOTAIR sequence based on reverse Hoogsteen hydrogen bonds. Notably, the predicted triple helix target sites for these HOTAIR domains were also enriched in differentially expressed genes and close to DNAm changes upon modulation of HOTAIR. Electrophoretic mobility shift assays provided further evidence that HOTAIR domains form RNA–DNA–DNA triplexes with predicted target sites. Our results demonstrate that HOTAIR impacts on differentiation of MSCs and that it is associated with senescence-associated DNAm. Targeting of epigenetic modifiers to relevant loci in the genome may involve triple helix formation with HOTAIR.
Background: Age-associated DNA methylation changes provide a promising biomarker for the aging process. While genome-wide DNA methylation profiles enable robust age-predictors by integration of many age-associated CG dinucleotides (CpGs), there are various alternative approaches for targeted measurements at specific CpGs that better support standardized and cost-effective high-throughput analysis. Results: In this study, we utilized 4647 Illumina BeadChip profiles of blood to select CpG sites that facilitate reliable age-predictions based on pyrosequencing. We demonstrate that the precision of DNA methylation measurements can be further increased with droplet digital PCR (ddPCR). In comparison, bisulfite barcoded amplicon sequencing (BBA-seq) gave slightly lower correlation between chronological age and DNA methylation at individual CpGs, while the age-predictions were overall relatively accurate. Furthermore, BBA-seq data revealed that the correlation of methylation levels with age at neighboring CpG sites follows a bell-shaped curve, often associated with a CTCF binding site. We demonstrate that within individual BBA-seq reads the DNA methylation at neighboring CpGs is not coherently modified, but reveals a stochastic pattern. Based on this, we have developed a new approach for epigenetic age predictions based on the binary sequel of methylated and non-methylated sites in individual reads, which reflects heterogeneity in epigenetic aging within a sample. Conclusion: Targeted DNA methylation analysis at few age-associated CpGs by pyrosequencing, BBA-seq, and particularly ddPCR enables high precision of epigenetic age-predictions. Furthermore, we demonstrate that the stochastic evolution of age-associated DNA methylation patterns in BBA-seq data enables epigenetic clocks for individual DNA strands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.