The nondestructive testing (NDT) techniques active thermography and terahertz time domain spectroscopy (THz-TDS) are both newcomers to the large range of established NDT methods: Both are contactless imaging techniques and well suited for analysing layered materials e.g. ceramic coatings, polymer laminates and glued materials. These two methods are compared for characterising ceramic coatings. Measurement results show these two methods are practicable and complimentary for NDT applications of layered structures. The pulse-thermography is suitable for fast screening inspection and THz-TDS imaging performs well for the detailed investigation of coatings and boundary variations.
Time-domain spectroscopy (TDS) in the terahertz (THz) frequency range is gaining in importance in nondestructive testing of dielectric materials. One application is the layer thickness measurement of a coating layer. To determine the thickness from the measurement data, the refractive index of the coating layer must be known in the surveyed frequency range. For perpendicular incidence of the radiation, methods exist to extract the refractive index from the measurement data themselves without prior knowledge. This paper extends these methods for non-perpendicular incidence, where the polarization of the radiation becomes important. Furthermore, modifications considering effects of surface roughness of the coating are introduced. The new methods are verified using measurement data of a sample of Inconel steel coated with yttria-stabilized zirconia (YSZ) and with COMSOL simulations of the measurement setup. To validate the thickness measurements, scanning electron microscopy (SEM) images of the layer structure are used. The results show good agreement with an average error of 1% for the simulation data and under 4% for the experimental data compared to reference measurements.
Time-domain spectroscopy (TDS) in the Terahertz (THz) frequency range is gaining in importance in nondestructive testing of dielectric materials. One application is the layer thickness measurement of a coating layer. To determine the thickness from the measurement data, the refractive index of the coating layer must be known in the surveyed frequency range. For perpendicular incidence of the radiation, methods exist to extract the refractive index from the measurement data itself without prior knowledge. This paper extends these methods for non-perpendicular incidence, where the polarization of the radiation becomes important. Furthermore, modifications considering effects of surface roughness of the coating are introduced. The new methods are verified using measurement data of a sample of Inconel steel coated with yttria-stabilized zirconia (YSZ) and with COMSOL simulations of the measurement setup. To validate the thickness measurements, scanning electron microscopy (SEM) images of the layer structure are used. The results show good agreement with an average error of 1% for the simulation data and under 4% for the experimental data compared to reference measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.