Glioblastoma is characterized by widespread genetic and transcriptional heterogeneity, yet little is known about the role of the epigenome in glioblastoma disease progression. Here, we present genome-scale maps of DNA methylation in matched primary and recurring glioblastoma tumors, using data from a highly annotated clinical cohort that was selected through a national patient registry. We demonstrate the feasibility of DNA methylation mapping in a large set of routinely collected FFPE samples, and we validate bisulfite sequencing as a multipurpose assay that allowed us to infer a range of different genetic, epigenetic, and transcriptional characteristics of the profiled tumor samples. On the basis of these data, we identified subtle differences between primary and recurring tumors, links between DNA methylation and the tumor microenvironment, and an association of epigenetic tumor heterogeneity with patient survival. In summary, this study establishes an open resource for dissecting DNA methylation heterogeneity in a genetically diverse and heterogeneous cancer, and it demonstrates the feasibility of integrating epigenomics, radiology, and digital pathology for a national cohort, thereby leveraging existing samples and data collected as part of routine clinical practice.
Distinct invasion patterns of brain metastases into the brain parenchyma are not specific for primary tumor types, seem to be influenced by expression of αv integrin complexes, and may help to guide clinical decision-making.
Trastuzumab deruxtecan is an antibody–drug conjugate with high extracranial activity in human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer. We conducted the prospective, open-label, single-arm, phase 2 TUXEDO-1 trial. We enrolled patients aged ≥18 years with HER2-positive breast cancer and newly diagnosed untreated brain metastases or brain metastases progressing after previous local therapy, previous exposure to trastuzumab and pertuzumab and no indication for immediate local therapy. Patients received trastuzumab deruxtecan intravenously at the standard dose of 5.4 mg per kg bodyweight once every 3 weeks. The primary endpoint was intracranial response rate measured according to the response assessment in neuro-oncology brain metastases criteria. A Simon two-stage design was used to compare a null hypothesis of <26% response rate against an alternative of 61%. Fifteen patients were enrolled in the intention-to-treat population of patients who received at least one dose of study drug. Two patients (13.3%) had a complete intracranial response, nine (60%) had a partial intracranial response and three (20%) had stable disease as the best intracranial response, with a best overall intracranial response rate of 73.3% (95% confidential interval 48.1–89.1%), thus meeting the predefined primary outcome. No new safety signals were observed and global quality-of-life and cognitive functioning were maintained over the treatment duration. In the TUXEDO-1 trial (NCT04752059, EudraCT 2020-000981-41), trastuzumab deruxtecan showed a high intracranial response rate in patients with active brain metastases from HER2-positive breast cancer and should be considered as a treatment option in this setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.