Mitochondrial calcium ( m Ca 2+ ) uptake occurs via the Mitochondrial Ca 2+ Uniporter (MCU) complex and plays a critical role in mitochondrial dynamics, mitophagy, and apoptosis. MCU complex activity is in part modulated by the expression of its regulatory subunits. Cardiovascular disease models demonstrated altered gene/protein expression of one or multiple subunits in different cells, including vascular endothelial cells (ECs). MCU complex activity was found necessary for stable flow (s‐flow)‐induced mitophagy and promotion of an atheroprotective EC phenotype. Disturbed flow (d‐flow) is known to lead to an atheroprone phenotype. Despite the role of MCU in flow‐regulated EC function, flow‐induced alterations in MCU complex subunit expression are currently unknown. We exposed cultured human ECs to atheroprotective (steady shear stress, SS) or atheroprone flow (oscillatory shear stress, OS) and measured mRNA and protein levels of the MCU complex members. SS and OS differentially modulated subunit expression at gene/protein levels. Protein expression changes of the core MCU, m Ca 2+ uptake 1 (MICU1) and MCU regulator 1 (MCUR1) subunits in SS‐ and OS‐exposed, compared to static, ECs suggested an enhanced m Ca 2+ influx under each flow and a potential contribution to EC dysfunction under OS. In silico analysis of a single‐cell RNA‐sequencing dataset was employed to extract transcript values of MCU subunits in mouse carotid ECs from regions exposed to s‐flow or d‐flow. Mcu and Mcur1 genes showed significant differences in expression after prolonged exposure to each flow. The differential expression of MCU complex subunits indicated a tight regulation of the complex activity under physiological and pathological hemodynamic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.