Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the conical scanning technique to measure the velocity field. The model captures the effect of volume illumination and conical scanning. The predictions are compared with the measurements from the ZephIR, WindCube, and sonic anemometers at a flat terrain test site under different atmospheric stability conditions. The sonic measurements are used at several heights on a meteorological mast in combination with lidars that are placed on the ground. Results show that the systematic errors are up to 90% for the vertical velocity variance, whereas they are up to 70% for the horizontal velocity variance. For the ZephIR, the systematic errors increase with height, whereas for the WindCube, they decrease with height. The systematic errors also vary with atmospheric stability and are low for unstable conditions. In general, for both lidars, the model agrees well with the measurements at all heights and under different atmospheric stability conditions. For the ZephIR, the model results are improved when an additional low-pass filter for the 3-s scan is also modeled. It is concluded that with the current measurement configuration, these lidars cannot be used to measure turbulence precisely.
Abstract:The power curve of a wind turbine is the primary characteristic of the machine as it is the basis of the warranty for it power production. The current IEC standard for power performance measurement only requires the measurement of the wind speed at hub height and the air density to characterise the wind field in front of the turbine. However, with the growing size of the turbine rotors during the last years, the effect of the variations of the wind speed within the swept rotor area, and therefore of the power output, cannot be ignored any longer. Primary effects on the power performance are from the vertical wind shear and the turbulence intensity. The work presented in this thesis consists of the description and the investigation of a simple method to account for the wind speed shear in the power performance measurement. Ignoring this effect was shown to result in a power curve dependant on the shear condition, therefore on the season and the site. It was then proposed to use an equivalent wind speed accounting for the whole speed profile in front of the turbine. The method was first tested with aerodynamic simulations of a multi-megawatt wind turbine which demonstrated the decrease of the scatter in the power curve. A power curve defined in terms of this equivalent wind speed would be less dependant on the shear than the standard power curve. The equivalent wind speed method was then experimentally validated with lidar measurements. Two equivalent wind speed definitions were considered both resulting in the reduction of the scatter in the power curve. As a lidar wind profiler can measure the wind speed at several heights within the rotor span, the wind speed profile is described with more accuracy than with the power law model. The equivalent wind speed derived from measurements, including at least one measurement above hub height, resulted in a smaller scatter in the power curve than the equivalent wind speed derived from profiles extrapolated from measurements at hub height and below only. It is well established that the turbulence intensity also influences the power performance of a wind turbine. Two ways of accounting for the turbulence were tested with the experimental data: an adaptation of the equivalent wind speed so that it also accounts for the turbulence intensity and the combination of the equivalent wind speed accounting for the wind shear only with the turbulence normalising method for turbulence intensity suggested by Albers. The second method was found to be more suitable for normalising the power curve for the turbulence intensity. Using the equivalent wind speed accounting for the wind shear in the power performance measurement was shown to result in a more repeatable power curve than the standard power curve and hence, in a better annual energy production estimation. Furthermore, the decrease of the scatter in the power curve corresponds to a decrease of the category A uncertainty in power, resulting in a smaller uncertainty in estimated AEP.The thesis is submitted to the Danish Tec...
Abstract. This is the second of two papers that document the creation of the New European Wind Atlas (NEWA). In Part 1, we described the sensitivity experiments and accompanying evaluation done to arrive at the final mesoscale model setup used to produce the mesoscale wind atlas. In this paper, Part 2, we document how we made the final wind atlas product, covering both the production of the mesoscale climatology generated with the Weather Research and Forecasting (WRF) model and the microscale climatology generated with the Wind Atlas Analysis and Applications Program (WAsP). The paper includes a detailed description of the technical and practical aspects that went into running the mesoscale simulations and the downscaling using WAsP. We show the main results from the final wind atlas and present a comprehensive evaluation of each component of the NEWA model chain using observations from a large set of tall masts located all over Europe. The added value of the WRF and WAsP downscaling of wind climatologies is evaluated relative to the performance of the driving ERA5 reanalysis and shows that the WRF downscaling reduces the mean wind speed bias and spread relative to that of ERA5 from -1.50±1.30 to 0.02±0.78 m s−1. The WAsP downscaling has an added positive impact relative to that of the WRF model in simple terrain. In complex terrain, where the assumptions of the linearized flow model break down, both the mean bias and spread in wind speed are worse than those from the raw mesoscale results.
The New European Wind Atlas project will create a freely accessible wind atlas covering Europe and Turkey, develop the model chain to create the atlas and perform a series of experiments on flow in many different kinds of complex terrain to validate the models. This paper describes the experiments of which some are nearly completed while others are in the planning stage. All experiments focus on the flow properties that are relevant for wind turbines, so the main focus is the mean flow and the turbulence at heights between 40 and 300 m. Also extreme winds, wind shear and veer, and diurnal and seasonal variations of the wind are of interest. Common to all the experiments is the use of Doppler lidar systems to supplement and in some cases replace completely meteorological towers. Many of the lidars will be equipped with scan heads that will allow for arbitrary scan patterns by several synchronized systems. Two pilot experiments, one in Portugal and one in Germany, show the value of using multiple synchronized, scanning lidar, both in terms of the accuracy of the measurements and the atmospheric physical processes that can be studied. The experimental data will be used for validation of atmospheric flow models and will by the end of the project be freely available.This article is part of the themed issue ‘Wind energy in complex terrains’.
We introduce a dynamical approach for the determination of power curves for wind turbines and compare it with two common methods-among them the standard procedure due to IEC 61400-12-1, i.e. the international standard prepared and published by the International Electrotechnical Commission. The main idea of the new method is to separate the dynamics of a wind turbine's power output into a deterministic and a stochastic part, corresponding to the actual behaviour of the wind turbine and external influences such as the turbulence of the wind, respectively. In particular, the governing coefficients are reconstructed from the data, and the power characteristic is extracted as the stationary states of the deterministic behaviour. Our results prove that a dynamical approach enables one to grasp the actual conversion dynamics of a wind turbine and to gain most accurate results for the power curve, independent of site-specific influences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.