Excess nutrient uptake and altered hormone secretion in the gut contribute to a systemic energy imbalance, which causes obesity and an increased risk of type 2 diabetes and colorectal cancer. This functional maladaptation is thought to emerge at the level of the intestinal stem cells (ISCs). However, it is not clear how an obesogenic diet affects ISC identity and fate. Here we show that an obesogenic diet induces ISC and progenitor hyperproliferation, enhances ISC differentiation and cell turnover and changes the regional identities of ISCs and enterocytes in mice. Single-cell resolution of the enteroendocrine lineage reveals an increase in progenitors and peptidergic enteroendocrine cell types and a decrease in serotonergic enteroendocrine cell types. Mechanistically, we link increased fatty acid synthesis, Ppar signaling and the Insr–Igf1r–Akt pathway to mucosal changes. This study describes molecular mechanisms of diet-induced intestinal maladaptation that promote obesity and therefore underlie the pathogenesis of the metabolic syndrome and associated complications.
Aims Targeting vascular inflammation represents a novel therapeutic approach to reduce complications of atherosclerosis. Neutralizing the pro-inflammatory cytokine interleukin-1β (IL-1β) using canakinumab, a monoclonal antibody, reduces the incidence of cardiovascular events in patients after myocardial infarction (MI). The biological basis for these beneficial effects remains incompletely understood. We sought to explore the mechanisms of IL-1β-targeted therapies. Methods and Results In mice with early atherosclerosis (ApoE-/- mice on a high-cholesterol diet for six weeks), we found that three weeks of NLRP3-inflammasome inhibition or anti-IL-1β treatment (using either MCC950, an NLRP3 inflammasome inhibitor which blocks production and release of active IL-1β; or a murine analog of canakinumab) dampened accumulation of leukocytes in atherosclerotic aortas, which consequently resulted in slower progression of atherosclerosis. Causally, we found that endothelial cells from atherosclerotic aortas lowered expression of leukocyte chemoattractants and adhesion molecules upon NLRP3-inflammasome inhibition, indicating that NLRP3-inflammasome- and IL-1β-targeted therapies reduced blood leukocyte recruitment to atherosclerotic aortas. In accord, adoptive transfer experiments revealed that anti-IL-1β treatment mitigated blood myeloid cell uptake to atherosclerotic aortas. We further report that anti-IL-1β treatment and NLRP3-inflammasome inhibition reduced inflammatory leukocyte supply by decreasing proliferation of bone marrow hematopoietic stem and progenitor cells, demonstrating that suppression of IL-1β and the NLRP3-inflammasome lowered production of disease-propagating leukocytes. Using bone marrow reconstitution experiments, we observed that hematopoietic cell-specific NLRP3-inflammasome activity contributed to both enhanced recruitment and increased supply of blood inflammatory leukocytes. Further experiments that queried whether anti-IL-1β treatment reduced vascular inflammation also in post-MI accelerated atherosclerosis documented the operation of convergent mechanisms (reduced supply and uptake of inflammatory leukocytes). In line with our pre-clinical findings, post-MI patients on canakinumab treatment showed reduced blood monocyte numbers. Conclusions Our murine and human data reveal that anti-IL-1β treatment and NLRP3-inflammasome inhibition dampened vascular inflammation and progression of atherosclerosis through reduced blood inflammatory leukocyte 1) supply and 2) uptake into atherosclerotic aortas providing additional mechanistic insights into links between hematopoiesis and atherogenesis, and into the beneficial effects of NLRP3-inflammasome- and IL-1β-targeted therapies. Translational perspective Therapeutic targeting of vascular inflammation represents a promising avenue to reduce complications of atherosclerosis. Neutralizing the pro-inflammatory cytokine interleukin-1β (IL-1β) reduces the incidence of cardiovascular events in patients with prior myocardial infarction. However, the mechanisms underlying these beneficial effects remain incompletely understood. This study explored how IL-1β and NLRP3-inflammasome suppression mitigated plaque progression. Our murine and human data reveal that pharmacological anti-IL-1β treatment and NLRP3-inflammasome inhibition dampened inflammatory leukocyte accumulation in atherosclerotic aortas through 1) decreased blood inflammatory leukocyte supply and 2) reduced blood inflammatory leukocyte uptake into in atherosclerotic aortas. These data provide additional mechanistic insights into links between hematopoiesis and atherogenesis, and inform future anti-inflammatory interventions in patients with atherosclerosis.
Aims Mental stress substantially contributes to the initiation and progression of human disease, including cardiovascular conditions. We aim to investigate the underlying mechanisms of these contributions since they remain largely unclear. Methods and results Here, we show in humans and mice that leucocytes deplete rapidly from the blood after a single episode of acute mental stress. Using cell-tracking experiments in animal models of acute mental stress, we found that stress exposure leads to prompt uptake of inflammatory leucocytes from the blood to distinct tissues including heart, lung, skin, and, if present, atherosclerotic plaques. Mechanistically, we found that acute stress enhances leucocyte influx into mouse atherosclerotic plaques by modulating endothelial cells. Specifically, acute stress increases adhesion molecule expression and chemokine release through locally derived norepinephrine. Either chemical or surgical disruption of norepinephrine signalling diminished stress-induced leucocyte migration into mouse atherosclerotic plaques. Conclusion Our data show that acute mental stress rapidly amplifies inflammatory leucocyte expansion inside mouse atherosclerotic lesions and promotes plaque vulnerability.
A missense variant of the sushi, von Willebrand factor type A, EGF and pentraxin domain containing protein 1 (SVEP1) is genome-wide significantly associated with coronary artery disease. The mechanisms how SVEP1 impacts atherosclerosis are not known. We found endothelial cells (EC) and vascular smooth muscle cells to represent the major cellular source of SVEP1 in plaques. Plaques were larger in atherosclerosis-prone Svep1 haploinsufficient (ApoE−/−Svep1+/−) compared to Svep1 wild-type mice (ApoE−/−Svep1+/+) and ApoE−/−Svep1+/− mice displayed elevated plaque neutrophil, Ly6Chigh monocyte, and macrophage numbers. We assessed how leukocytes accumulated more inside plaques in ApoE−/−Svep1+/− mice and found enhanced leukocyte recruitment from blood into plaques. In vitro, we examined how SVEP1 deficiency promotes leukocyte recruitment and found elevated expression of the leukocyte attractant chemokine (C-X-C motif) ligand 1 (CXCL1) in EC after incubation with missense compared to wild-type SVEP1. Increasing wild-type SVEP1 levels silenced endothelial CXCL1 release. In line, plasma Cxcl1 levels were elevated in ApoE−/−Svep1+/− mice. Our studies reveal an atheroprotective role of SVEP1. Deficiency of wild-type Svep1 increased endothelial CXCL1 expression leading to enhanced recruitment of proinflammatory leukocytes from blood to plaque. Consequently, elevated vascular inflammation resulted in enhanced plaque progression in Svep1 deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.