The self-controlled motor learning literature consists of experiments that compare a group of learners who are provided with a choice over an aspect of their practice environment to a group who are yoked to those choices. A qualitative review of the literature suggests an unambiguous benefit from self-controlled practice. A meta-analysis was conducted on the effects of self-controlled practice on retention test performance measures with a focus on assessing and potentially correcting for selection bias in the literature, such as publication bias and p-hacking. First, a naïve random effects model was fit to the data and a moderate benefit of self-controlled practice, g = .44 (k = 52, N = 2061, 95% CI [.31, .56]), was found. Second, publication status was added to the model as a potential moderator, revealing a significant difference between published and unpublished findings, with only the former reporting a benefit of self-controlled practice. Third, to investigate and adjust for the impact of selectively reporting statistically significant results, a weight-function model was fit to the data with a one-tailed p-value cutpoint of .025. The weight-function model revealed substantial selection bias and estimated the true average effect of self- controlled practice as g = .107 (95% CI [.047, .18]). P-curve analyses were conducted on the statistically significant results published in the literature and the outcome suggested a lack of evidential value. Fourth, a suite of sensitivity analyses were conducted to evaluate the robustness of these results, all of which converged on trivially small effect estimates. Overall, our results suggest the benefit of self-controlled practice on motor learning is small and not currently distinguishable from zero.
The self-controlled motor learning literature consists of experiments that compare a group of learners who are provided with a choice over an aspect of their practice environment to a group who are yoked to those choices. A qualitative review of the literature suggests an unambiguous benefit from self-controlled practice. A meta-analysis was conducted on the effects of self-controlled practice on retention test performance measures with a focus on assessing and potentially correcting for selection bias in the literature, such as publication bias and p-hacking. First, a naïve random effects model was fit to the data and a moderate benefit of self-controlled practice, g=.44 (k= 52,N= 3134,95%CI[.31, .56]), was found. Second, publication status was added to the model as a potential moderator, revealing a significant difference between published and unpublished findings, with only the former reporting a benefit of self-controlled practice. Third, to investigate and adjust for the impact of selectively reporting statistically significant results, a weight-function model was fit to the data with a one-tailed p-value cutpoint of .025. The weight-function model revealed substantial selection bias and estimated the true average effect of self-controlled practice as g=.107 (95%CI[.047, .18]). P-curve analyses were conducted on the statistically significant results published in the literature and the outcome suggested a lack of evidential value. Fourth, a suite of sensitivity analyses were conducted to evaluate the robustness of these results, all of which converged on trivially small effect estimates. Overall, our results suggest the benefit of self-controlled practice on motor learning is small and not currently distinguishable from zero.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.