We explore the role of coupling between silver nanowires and an underlying silver film in fluorescence enhancement from proximal molecules. Variation of the thickness of an oxide layer separating nanowire arrays from the Ag film causes an alternation in the incident light polarization that produces the highest enhancement. Finite difference time domain calculations show that it results from an alternation of regions of high field above and between nanowires as the spacer thickness is increased.
We use scanning fluorescence microscopy and electron beam lithography to probe the mechanism of fluorescence enhancement by periodic arrays of silver nanostructures, determining the optimum size and spacing of both Ag nanowires and Ag nanocolumns for incident light of different wavelengths and polarizations. Finite difference time domain (FDTD) calculations show a systematic variation with spatial period and incident polarization of the local electric field above the surface of the arrays which correlate well with that of the measured fluorescence enhancement, but a lack of a simple proportionality indicates that the dependence of the radiative and nonradiative decay rates on array geometry must be included in models for this effect. The dependence of the enhancement on spatial period and polarization indicates the importance of surface plasmon standing waves in this effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.