INTRODUCTION:
Duodenal epithelial barrier impairment and immune activation may play a role in the pathogenesis of functional dyspepsia (FD). This study was aimed to evaluate the duodenal epithelium of patients with FD and healthy individuals for detectable microscopic structural abnormalities.
METHODS:
This is a prospective study using esophagogastroduodenoscopy enhanced with duodenal confocal laser endomicroscopy (CLE) and mucosal biopsies in patients with FD (n = 16) and healthy controls (n = 18). Blinded CLE images analysis evaluated the density of epithelial gaps (cell extrusion zones), a validated endoscopic measure of the intestinal barrier status. Analyses of the biopsied duodenal mucosa included standard histology, quantification of mucosal immune cells/cytokines, and immunohistochemistry for inflammatory epithelial cell death called pyroptosis. Transepithelial electrical resistance (TEER) was measured using Ussing chambers. Epithelial cell-to-cell adhesion proteins expression was assessed by real-time polymerase chain reaction.
RESULTS:
Patients with FD had significantly higher epithelial gap density on CLE in the distal duodenum than that of controls (P = 0.002). These mucosal abnormalities corresponded to significant changes in the duodenal biopsy samples of patients with FD, compared with controls, including impaired mucosal integrity by TEER (P = 0.009) and increased number of epithelial cells undergoing pyroptosis (P = 0.04). Reduced TEER inversely correlated with the severity of certain dyspeptic symptoms. Furthermore, patients with FD demonstrated altered duodenal expression of claudin-1 and interleukin-6. No differences in standard histology were found between the groups.
DISCUSSION:
This is the first report of duodenal CLE abnormalities in patients with FD, corroborated by biopsy findings of epithelial barrier impairment and increased cell death, implicating that duodenal barrier disruption is a pathogenesis factor in FD and introducing CLE a potential diagnostic biomarker in FD.
OBJECTIVES:Epithelial gaps resulting from intestinal cell extrusions can be visualized with confocal laser endomicroscopy (CLE) during colonoscopy and increased in normal-appearing terminal ileum of inflammatory bowel disease (IBD) patients. Cell-shedding events on CLE were found to be predictive of disease relapse. The aim of this study was to assess the prognostic value of epithelial gap densities for major clinical events (hospitalization or surgery) in follow-up.METHODS:We prospectively followed IBD patients undergoing colonoscopy with probe-based CLE (pCLE) for clinical events including symptom flares, medication changes, hospitalization, or surgery. Survival analysis methods were used to compare event times for the composite outcome of hospitalization or surgery using log-rank tests and Cox proportional hazards models. We also examined the relationship of gap density with IBD flares, need for anti-tumor necrosis factor therapy, disease duration, gender and endoscopic disease severity, and location.RESULTS:A total of 21 Crohn's disease and 20 ulcerative colitis patients with a median follow-up of 14 (11–31) months were studied. Patients with elevated gap density were at significantly higher risk for hospitalization or surgery (log-rank test P=0.02). Gap density was a significant predictor for risk of major events, with a hazard ratio of 1.10 (95% confidence interval=1.01, 1.20) associated with each increase of 1% in gap density. Gap density was also correlated with IBD disease duration (Spearman's correlation coefficient rho=0.44, P=0.004), and was higher in male patients (9.0 vs. 3.6 gaps per 100 cells, P=0.038).CONCLUSIONS:Increased epithelial gaps in the small intestine as determined by pCLE are a predictor for future hospitalization or surgery in IBD patients.
Microbial sensing plays essential roles in the innate immune response to pathogens. In particular, NLRP3 forms a multiprotein inflammasome complex responsible for the maturation of interleukin (IL)-1β. Our aim was to delineate the role of the NLRP3 inflammasome in macrophages, and the contribution of IL-1β to the host defense against Citrobacter rodentium acute infection in mice. Nlrp3−/− and background C57BL/6 (WT) mice were infected by orogastric gavage, received IL-1β (0.5 µg/mouse; ip) on 0, 2, and 4 days post-infection (DPI), and assessed on 6 and 10 DPI. Infected Nlrp3−/− mice developed severe colitis; IL-1β treatments reduced colonization, abrogated dissemination of bacteria to mesenteric lymph nodes, and protected epithelial integrity of infected Nlrp3−/− mice. In contrast, IL-1β treatments of WT mice had an opposite effect with increased penetration of bacteria and barrier disruption. Microscopy showed reduced damage in Nlrp3−/− mice, and increased severity of disease in WT mice with IL-1β treatments, in particular on 10 DPI. Secretion of some pro-inflammatory plasma cytokines was dissipated in Nlrp3−/− compared to WT mice. IL-1β treatments elevated macrophage infiltration into infected crypts in Nlrp3−/− mice, suggesting that IL-1β may improve macrophage function, as exogenous administration of IL-1β increased phagocytosis of C. rodentium by peritoneal Nlrp3−/− macrophages in vitro. As well, the exogenous administration of IL-1β to WT peritoneal macrophages damaged the epithelial barrier of C. rodentium-infected polarized CMT-93 cells. Treatment of Nlrp3−/− mice with IL-1β seems to confer protection against C. rodentium infection by reducing colonization, protecting epithelial integrity, and improving macrophage activity, while extraneous IL-1β appeared to be detrimental to WT mice. Together, these findings highlight the importance of balanced cytokine responses as IL-1β improved bacterial clearance in Nlrp3−/− mice but increased tissue damage when given to WT mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.