Fast cine displacement encoding with stimulated echoes (DENSE) has comparative advantages over tagged MRI (TMRI) including higher spatial resolution and faster post-processing. This study computed regional radial and circumferential myocardial strains with DENSE displacements and validated it in reference to TMRI, according to American Heart Association (AHA) guidelines for standardized segmentation of regions in the left ventricle (LV). This study was therefore novel in examining agreement between the modalities in 16 AHA recommended LV segments. DENSE displacements were obtained with spatiotemporal phase unwrapping and TMRI displacements obtained with a conventional tag-finding algorithm. A validation study with a rotating phantom established similar shear strain between modalities prior to in vivo studies. A novel meshfree nearest node finite element method (NNFEM) was used for rapid computation of Lagrange strain in both phantom and in vivo studies in both modalities. Also novel was conducting in vivo repeatability studies for observing recurring strain patterns in DENSE and increase confidence in it. Comprehensive regional strain agreements via Bland–Altman analysis between the modalities were obtained. Results from the phantom study showed similar radial-circumferential shear strains from the two modalities. Mean differences in regional in vivo circumferential strains were −0.01 ± 0.09 (95% limits of agreement) from comparing the modalities and −0.01 ± 0.07 from repeatability studies. Differences and means from comparison and repeatability studies were uncorrelated (p>0.05) indicating no increases in differences with increased strain magnitudes. Bland–Altman analysis and similarities in regional strain distribution within the myocardium showed good agreements between DENSE and TMRI and show their interchangeability. NNFEM was also established as a common framework for computing strain in both modalities.
Anterior cruciate ligament (ACL) injuries are commonly incurred by recreational and professional women athletes during non-contact jumping maneuvers in sports like basketball and volleyball, where incidences of ACL injury is more frequent to females compared to males. What remains a numerical challenge is in vivo calculation of ACL strain and internal force. This study investigated effects of increasing stop-jump height on neuromuscular and bio-mechanical properties of knee and ACL, when performed by young female recreational athletes. The underlying hypothesis is increasing stop-jump (platform) height increases knee valgus angles and external moments which also increases ACL strain and internal force. Using numerical analysis tools comprised of Inverse Kinematics, Computed Muscle Control and Forward Dynamics, a novel approach is presented for computing ACL strain and internal force based on (1) knee joint kinematics and (2) optimization of muscle activation, with ACL insertion into musculoskeletal model. Results showed increases in knee valgus external moments and angles with increasing stop-jump height. Increase in stop-jump height from 30 to 50 cm lead to increase in average peak valgus external moment from 40.5 ± 3.2 to 43.2 ± 3.7 Nm which was co-incidental with increase in average peak ACL strain, from 9.3 ± 3.1 to 13.7 ± 1.1%, and average peak ACL internal force, from 1056.1 ± 71.4 to 1165.4 ± 123.8 N for the right side with comparable increases in the left. In effect this study demonstrates a technique for estimating dynamic changes to knee and ACL variables by conducting musculoskeletal simulation on motion analysis data, collected from actual stop-jump tasks performed by young recreational women athletes.
A novel shear-test device for soft biological tissue, capable of applying simple shear deformations simultaneously in two orthogonal directions while measuring the resulting forces generated in three axes, is described. We validated the device using a synthetic gel, the properties of which were ascertained from independent tensile and rotational shear tests. Material parameters for the gel were fitted using neo-Hookean analytical solutions to the independent test data, and these matched the results from the device. Preliminary results obtained with rat septal myocardium are also presented to demonstrate the feasibility of the apparatus in determining the shear characteristics of living tissue.
Purpose Fast cine displacement encoding with stimulated echoes (DENSE) MR has higher spatial resolution and enables rapid post-processing. Thus we compared the accuracy of regional strains computation by DENSE with tagged MR in healthy and non-ischemic, non-valvular dilated cardiomyopathy (DCM) subjects. Materials and Methods Validation of 3D regional strains computed with DENSE was conducted in reference to standard tagged MRI (TMRI) in healthy subjects and patients with DCM. Additional repeatability studies in healthy subjects were conducted to increase confidence in DENSE. A meshfree multiquadrics radial point interpolation method (RPIM) was used for computing Lagrange strains in sixteen left ventricular segments. Bland-Altman analysis and Student's t-tests were conducted to observe similarities in regional strains between sequences and in DENSE repeatability studies. Results Regional circumferential strains ranged from -0.21 ± 0.07 (Lateral-Apex) to -0.11 ± 0.05 (Posterorseptal-Base) in healthy subjects and -0.15 ± 0.04 (Anterior-Apex) to -0.02 ± 0.08 (Posterorseptal-Base) in DCM patients. Computed mean differences in regional circumferential strain from the DENSE-TMRI comparison study was 0.01 ± 0.03 (95% limits of agreement) in normal subjects, -0.01 ± 0.06 in DCM patients and 0.0 ± 0.02 in repeatability studies, with similar agreements in longitudinal and radial strains. Conclusion We found agreement between DENSE and tagged MR in patients and volunteers in terms of evaluation of regional strains.
The central goal of this study was to contribute to the advancements being made in determining the underlying causes of anterior cruciate ligament (ACL) injuries. ACL injuries are frequently incurred by recreational and professional young female athletes during non-contact impact activities in sports like volleyball and basketball. This musculoskeletal-neuromuscular study investigated stop-jumps and factors related to ACL injury like knee valgus and internal-external moment loads, knee anterior-posterior (AP) shear forces, ACL strains and internal forces. Motion capture data was obtained from the landing phase of stop-jumps performed by eleven young recreational female athletes and electromyography (EMG) data collected from quadriceps, hamstring and gastrocnimius muscles which were then compared to numerically estimated activations. Numerical simulation tools used were Inverse Kinematics, Computed Muscle Control and Forward Dynamics and the knee modeled as a six degree of freedom joint. Results showed averaged peak strains of 12.2 ± 4.1% in the right and 11.9 ± 3.0% in the left ACL. Averaged peak knee AP shear forces were 482.3 ± 65.7 N for the right and 430.0 ± 52.4 N for the left knees, approximately equal to 0.7-0.8 times body weight across both knees. A lack of symmetry was observed between the knees for valgus angles (p < 0.04), valgus moments (p < 0.001) and muscle activations (p < 0.001), all of which can be detrimental to ACL stability during impact activities. Comparisons between recorded EMG data and estimated muscle activations show the relation between electrical signal and muscle depolarization. In summary, this study outlines a musculoskeletal simulation approach that provides numerical estimations for a number of variables associated with ACL injuries in female athletes performing stop-jumps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.