Spatial synthesis of N-acyl-phosphatidylethanolamines (NAPEs) and N-acylethanolamines (NAEs) during ischemia-reperfusion in neonatal rats has been investigated and compared to the spatial degradation of other phospholipids. Ischemia was induced in anesthetized Wistar P7 rat pups by left middle cerebral artery electrocoagulation combined with a transient and concomitant occlusion of both common carotid arteries. Pups were sacrificed after 24 and 48 h. Sham-treated animals were sacrificed after 48 h. The frozen brains were sliced and subjected to desorption electrospray ionization imaging mass spectrometry. There was a remarkable increase in the levels of many species of NAPEs in the whole injured area at both time points, and a clear but minor increase in selected NAEs. In the ischemic area, the sodium adducts of phosphatidylcholine and of lyso-phosphatidylcholine accumulated and the potassium adduct of phosphatidylcholine disappeared, indicating breakdown of the Na(+)/K(+) pump. Free fatty acids, e.g., arachidonic and docosahexaenoic acids, tended to be more abundant in the periphery than in the center of the ischemic area and showed different spatial distribution. NAPEs are synthesized in the whole ischemic area where the cells seem to be dead and other phospholipids are degraded. Free fatty acids can be found in the periphery of the ischemic area.
Commonly used implants for therapeutic approaches of non-systemically impaired bone do not sufficiently support the healing process of osteoporotic bone. Since strontium (II) has been proven as an effective anti-osteoporotic drug new types of strontium enriched calcium phosphate bone cements were developed. As osteoporosis is characterized by an imbalance of osteoblast and osteoclast activity the influence of this newly generated strontium enriched biomaterials on the cellular behavior of osteoblast-like cells was investigated by time of flight secondary ion mass spectrometry (ToF-SIMS). ToF-SIMS is used to analyze whether strontium is incorporated in the mineralized extracellular matrix (mECM) and whether there is strontium uptake by osteogenically differentiated human mesenchymal stem cells (hMSCs). Therefore hMSCs were cultured in osteogenic differentiation medium for 21 days on two different strontium enriched bone cements (S100 and A10) and for reference also on the pure calcium phosphate cement (CPC) and on a silicon wafer. The distribution of strontium in the osteoblast-like cells and within their mineralized extracellular matrix was analyzed. A higher intensity of the strontium signal could be detected in the region of the mECM, synthesized by cells cultivated on the Sr- substituted bone cement (S100) in comparison to the reference groups. The osteoblast-like cells used the released strontium from the biomaterial to synthesize their mECM. Apart from that a uniform strontium distribution was measured within all investigated cells. However, different amounts of strontium were found in cells cultured on different biomaterials and substrates. Compared to the negative controls the strontium content in the cells on the strontium enriched biomaterials was much higher. A higher concentration of strontium inside the cells means that more strontium can take part in signaling pathways. As strontium is known for its beneficial effects on osteoblasts by promoting osteoblastic cell replication and differentiation, and reducing apoptosis, the newly developed strontium enriched calcium phosphate cements are promising implant materials for osteoporotic bone. Electronic supplementary material The online version of this article (doi:10.1186/1559-4106-8-17) contains supplementary material, which is available to authorized users.
Tuberculosis (TB) is characterized by mycobacteria-harboring centrally necrotizing granulomas. The efficacy of anti-TB drugs depends on their ability to reach the bacteria in the center of these lesions. Therefore, we developed a mass spectrometry (MS) imaging workflow to evaluate drug penetration in tissue. We employed a specific mouse model thatin contrast to regular inbred micestrongly resembles human TB pathology. Mycobacterium tuberculosis was inactivated in lung sections of these mice by γ-irradiation using a protocol that was optimized to be compatible with high spatial resolution MS imaging. Different distributions in necrotic granulomas could be observed for the anti-TB drugs clofazimine, pyrazinamide, and rifampicin at a pixel size of 30 μm. Clofazimine, imaged here for the first time in necrotic granulomas of mice, showed higher intensities in the surrounding tissue than in necrotic granulomas, confirming data observed in TB patients. Using high spatial resolution drug and lipid imaging (5 μm pixel size) in combination with a newly developed data analysis tool, we found that clofazimine does penetrate to some extent into necrotic granulomas and accumulates in the macrophages inside the granulomas. These results demonstrate that our imaging platform improves the predictive power of preclinical animal models. Our workflow is currently being applied in preclinical studies for novel anti-TB drugs within the German Center for Infection Research (DZIF). It can also be extended to other applications in drug development and beyond. In particular, our data analysis approach can be used to investigate diffusion processes by MS imaging in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.