Nonalcoholic fatty liver disease (NAFLD) is a burgeoning health problem of unknown etiology that varies in prevalence among ethnic groups. To identify genetic variants contributing to differences in hepatic fat content, we performed a genome-wide association scan of nonsynonymous sequence variations (n=9,229) in a multiethnic population. An allele in PNPLA3 (rs738409; I148M) was strongly associated with increased hepatic fat levels (P=5.9×10−10) and with hepatic inflammation (P=3.7×10−4). The allele was most common in Hispanics, the group most susceptible to NAFLD; hepatic fat content was > 2-fold higher in PNPLA3-148M homozygotes than in noncarriers. Resequencing revealed another allele associated with lower hepatic fat content in African-Americans, the group at lowest risk of NAFLD. Thus, variation in PNPLA3 contributes to ethnic and inter-individual differences in hepatic fat content and susceptibility to NAFLD.
Nonalcoholic fatty liver disease (NAFLD) is the most common form of liver disease. To elucidate the molecular basis of NAFLD we performed an exome-wide association study of liver fat content. Three variants were associated with increased liver fat at the exome-wide significance level: two in PNPLA3, an established locus for NAFLD, and one (Glu167Lys) in TM6SF2, a gene of unknown function. The Glu167LysTM6SF2 variant was also associated with higher circulating levels of alanine transaminase, a marker of liver injury, and lower levels of LDL-cholesterol, triglycerides and alkaline phosphatase in 3 independent populations (n>80,000). Recombinant Glu167LysTM6SF2 produced 50% less protein than wild-type TM6SF2 when expressed in cultured hepatocytes. Adeno-associated virus-mediated shRNA knockdown of Tm6sf2 in mice increased liver triglyceride content 3-fold and decreased VLDL secretion by 50%. Taken together, these data indicate that TM6SF2 activity is required for normal VLDL secretion, and that impaired TM6SF2 function causally contributes to NAFLD.
A loss-of-function variant in HSD17B13 was associated with a reduced risk of chronic liver disease and of progression from steatosis to steatohepatitis. (Funded by Regeneron Pharmaceuticals and others.).
Angiopoietin-like proteins (ANGPTLs) play major roles in the trafficking and metabolism of lipids. Inactivation of ANGPTL3, a gene located in an intron of DOCK7, results in very low levels of LDL-cholesterol (C), HDL-C and triglyceride (TAG). We identified another ANGPTL family member, ANGPTL8, which is located in the corresponding intron of DOCK6. A variant in this family member (rs2278426, R59W) was associated with lower plasma LDL-C and HDL-C levels in three populations. ANGPTL8 is expressed in liver and adipose tissue, and circulates in plasma of humans. Expression of ANGPTL8 was reduced by fasting and increased by refeeding in both mice and humans. To examine the functional relationship between the two ANGPTL family members, we expressed ANGPTL3 at physiological levels alone or together with ANGPTL8 in livers of mice. Plasma TAG level did not change in mice expressing ANGPTL3 alone, whereas coexpression with ANGPTL8 resulted in hypertriglyceridemia, despite a reduction in circulating ANGPTL3. ANGPTL8 coimmunoprecipitated with the N-terminal domain of ANGPTL3 in plasma of these mice. In cultured hepatocytes, ANGPTL8 expression increased the appearance of N-terminal ANGPTL3 in the medium, suggesting ANGPTL8 may activate ANGPTL3. Consistent with this scenario, expression of ANGPTL8 in Angptl3 −/− mice failed to promote hypertriglyceridemia. Thus, ANGPTL8, a paralog of ANGPTL3 that arose through duplication of an ancestral DOCK gene, regulates postprandial TAG and fatty acid metabolism by controlling activation of its progenitor, and perhaps other ANGPTLs. Inhibition of ANGPTL8 provides a new therapeutic strategy for reducing plasma lipoprotein levels.T he angiopoietin-like (ANGPTL) genes encode a family of secreted proteins with pleiotropic effects on vascular cells (1), lipid metabolism (2), and stem cell biology (3). The family members share a common architecture, comprising an extended N-terminal domain and a C-terminal fibrinogen-like domain. Genetic studies have revealed that two closely related family members, ANGPTL3 and ANGPTL4, play pivotal roles in the trafficking and metabolism of lipids and lipoproteins (4-7). Mutations that disrupt ANGPTL3 are associated with greatly reduced plasma levels of triacylglycerol (TAG) and cholesterol in mice (5) and in humans (4). Mice lacking ANGPTL4 also have markedly reduced levels of plasma TAG and cholesterol (8, 9), and sequence variations in ANGPTL4 are associated with lower plasma TAG levels in humans (7).TAG synthesized in the gut and liver are incorporated into chylomicrons and very low density lipoproteins (VLDL), respectively, and delivered to peripheral tissues where they interact with lipoprotein lipase (LPL). LPL hydrolyzes the TAGs, releasing fatty acids to the adjacent tissues. Other intravascular lipases, including hepatic lipase and endothelial lipase, further remodel lipoprotein particles. Several lines of evidence suggest that ANGPTL3 and ANGPTL4 contribute to the partitioning of TAGs among tissues (2). During fasting, ANGPTL4 levels increase in ad...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.