Inflammatory bowel diseases (IBD) are at the top of the worldwide rankings for gastrointestinal diseases as regards occurrence, yet efficient and side-effect-free treatments are currently unavailable. In the current study, we proposed a new concept for anti-inflammatory treatment based on gold (III) complexes. A new gold (III) complex TGS 121 was designed and screened in the in vitro studies using a mouse macrophage cell line, RAW264.7, and in vivo, in the dextran sulphate sodium (DSS)-induced mouse model of colitis. Physicochemical studies showed that TGS 121 was highly water-soluble; it was stable in water, blood, and lymph, and impervious to sunlight. In lipopolysaccharide (LPS)-stimulated RAW264.7 cells, the complex showed a potent anti-inflammatory profile, as evidenced in neutral red uptake and Griess tests. In the DSS-induced mouse model of colitis, the complex administered in two doses (1.68 μg/kg, intragastrically, and 16.8 μg/kg, intragastrically, once daily) produced a significant (* p < 0.05) anti-inflammatory effect, as shown by macroscopic score. The mechanism of action of TGS 121 was related to the enzymatic and non-enzymatic antioxidant system; moreover, TGS 121 induced changes in the tight junction complexes expression in the intestinal wall. This is the first study proving that gold (III) complexes may have therapeutic potential in the treatment of IBD.
Diet is considered an important trigger in inflammatory bowel diseases (IBD), as feeding habits can affect intestinal permeability and clearance of bacterial antigens, consequently influencing the immune system. Free fatty acid receptors (FFARs), expressed on the intestinal epithelial cells, belong to the family of luminal-facing receptors that are responsive to nutrients. The objective of this study was to characterize the anti-inflammatory activity and the effect on intestinal barrier function of synthetic FFAR agonists in mouse models of colitis. Therapeutic activity of GW9508 (FFAR1 agonist), 4-CMTB (FFAR2 agonist), AR420626 (FFAR3 agonist), and GSK137647 (FFAR4 agonist) was investigated in two models of semi-chronic colitis: induced by trinitrobenzenesulfonic acid (TNBS), mimicking Crohn’s disease, as well as induced by dextran sulfate sodium (DSS), which recapitulates ulcerative colitis in humans. Moreover, we assessed the influence of FFARs agonists on epithelial ion transport and measured the ion flow stimulated by forskolin and veratridine. Administration of FFAR4 agonist GSK137647 attenuated both TNBS-induced and DSS-induced colitis in mice, as indicated by macroscopic parameters and myeloperoxidase activity. The action of FFAR4 agonist GSK137647 was significantly blocked by pretreatment with selective FFAR4 antagonist AH7614. Moreover, FFAR1 and FFAR4 agonists reversed the increase in the colon permeability caused by inflammation. FFAR4 restored the tight junction genes expression in mouse colon. This is the first evaluation of the anti-inflammatory activity of selective FFAR agonists, showing that pharmacological intervention targeting FFAR4, which is a sensor of medium and long chain fatty acids, attenuates intestinal inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.