Flavoprotein monooxygenases are a versatile group of enzymes for biocatalytic transformations. Among these, group E monooxygenases (GEMs) catalyze enantioselective epoxidation and sulfoxidation reactions. Here, we describe the crystal structure of an indole monooxygenase from the bacterium Variovorax paradoxus EPS, a GEM designated as VpIndA1. Complex structures with substrates reveal productive binding modes that, in conjunction with force‐field calculations and rapid mixing kinetics, reveal the structural basis of substrate and stereoselectivity. Structure‐based redesign of the substrate cavity yielded variants with new substrate selectivity (for sulfoxidation of benzyl phenyl sulfide) or with greatly enhanced stereoselectivity (from 35.1 % to 99.8 % ee for production of (1S,2R)‐indene oxide). This first determination of the substrate binding mode of GEMs combined with structure‐function relationships opens the door for structure‐based design of these powerful biocatalysts.
A flavin‐dependent group E monooxygenase ("GEM”) has been characterized by crystal‐structure analysis, computational and kinetic studies to reveal substrate binding and mechanistic details for this class of enzymes for the first time. Based on these data, Dirk Tischler, Norbert Sträter, and co‐workers redesigned the substrate binding pocket to synthesize chiral epoxides and sulfoxides with high stereoselectivity, a true treasure of molecular gems, as described in their Research Article (e202300657).
…g roup Em onooxygenase ("GEM") has been characterized by crystal-structure analysis,computational and kinetic studies to reveal substrate binding and mechanistic details for this class of enzymes for the first time.B ased on these data, Dirk Tischler, Norbert Sträter, and co-workers redesigned the substrate binding pocket to synthesize chiral epoxides and sulfoxides with high stereoselectivity,atrue treasure of molecular gems,asdescribed in their Research Article (e202300657).
Flavoprotein‐Monooxygenasen sind eine vielseitige Gruppe von Enzymen für biokatalytische Reaktionen. Die dazugehörigen Monooxygenasen der Gruppe E (GEMs) katalysieren enantioselektive Epoxidierungs‐ und Sulfoxidierungsreaktionen. In dieser Arbeit beschreiben wir die Kristallstruktur einer Indol‐Monooxygenase aus dem Bakterium Variovorax paradoxus EPS, einer GEM mit der Bezeichnung VpIndA1. Basierend auf Substratkomplexstrukturen produktiver Bindungsmodi und in Verbindung mit Kraftfeldberechnungen sowie durch schnelle Mischungskinetik zeigen wir die strukturelle Grundlage der Substrat‐ und Stereoselektivität auf. Die strukturbasierte Umgestaltung der Substrattasche führte zu Varianten mit neuer Substratselektivität (für die Sulfoxidation von Benzylphenylsulfid) oder mit stark erhöhter Stereoselektivität (von 35.1 % auf 99.8 % ee für die Herstellung von (1S,2R)‐Indenoxid). Diese erste Bestimmung des Substratbindungsmodus von GEMs in Verbindung mit der Untersuchung von Struktur‐Funktions‐Beziehungen öffnet die Tür für ein strukturbasiertes Design dieser leistungsstarken Biokatalysatoren.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.